
Converting Informal Meta-data to VDM-SL:
A Reverse Calculation Approach

F.L. Neves, J.C. Silva & J.N. Oliveira?

Informatics Department, University of Minho
Braga, Portugal

VDM in Practice!
A Workshop co-located with FM’99: The World Congress on Formal Methods

Toulouse, France, 20-21 September 1999

1 Introduction

Enterprise competitiveness in the information age is very much dependent on the quality
of the underlying information systems. These provide crucial support to as important
tasks as strategic business planning and decision support. Information system quality
is, in turn, highly dependent upon consistency and reliability of stored data. However,
it is hard to maintain the quality of fast-growing data in loosely structured information
systems. These very rapidly become infected with so-called “dirty” data, a problem
nowadays identified under thedata qualityheading.

In the last few years, many companies around the world have spent large amounts
of resources on process re-engineering encompassing both applications and data repos-
itories, in order to face the growing interest indata mining[1], data warehouse[12]
andWeb marketingsystems [25].

The authors are currently engaged in aR& D project (KARMA) which aims at ad-
dressing data-quality from aformal-methodviewpoint. This includes the adoption of
formal techniques for meta-data representation and (reverse) calculation of data inten-
sive applications. The KARMA-consortium involves three software houses1 which con-
tribute to the project with their experience in large data purification contracts.

2 About the KARMA Project

The system currently under development in KARMA builds upon past experience gath-
ered in an academic reverse engineering project [21] and some experiments in software
reuse [18] involving formal reverse data-structure calculation.

? Dep. Informática, Universidade do Minho, Campus de Gualtar, 4700-320 Braga, Portugal. The
research described in this paper has been funded by the Portuguese Science and Technology
Foundation under Research Contract KARMA (P060-P31B-09/97).

1 These are NOVABASE PORTOLtd, NOVABASE LISBON Ltd and SIDEREUSLtd (Porto).



The adopted formal calculus [20, 22] has been developed as an alternative to stan-
dard normalization theory, framing database design into the wider area ofdata refine-
ment[15]. Informal data models such as described by E-R diagrams, for instance, are
turned into systems of datatype definitions in a systematic way [24]. Integrity con-
straints and business rules (which are so dear to the “data cleansing” practitioner) are
identified withabstraction invariants[16] anddatatype invariants[15], respectively,
whose structural synthesis (analysis) by calculation is precisely the core of the calculus
[22] and can be animated at rapid-prototyping level.

A prototype has emerged from the formal specification of a particular tool we have
been designing for the KARMA software system. The ultimate goal of this tool is to de-
liver concise formal descriptions — written in the ISO standard formal notation VDM-
SL [13, 8] — out of informal or poorly structured meta-data.

3 A Tool for Deriving V DM-SL from Informal Meta-data

Our experiments with the current prototype version of the KARMA toolset include a re-
alistic example taken from [21]: the process of reversing the information system which
supports, in ORACLE technology, the operation of the Student Records Office of Minho
University. Out of a poorly documented relational database schema consisting of 53
tables operated by more than 230 units of code, the system delivers a compact VDM-SL

description consisting of only 14 high-level finite-mapping structures.
It should be stressed that this tool is not fully automatic. It requires user guidance

with respect to the selection of the formal laws of the calculus which should be applied
in each particular step. In many situations this is actually a complex decision, as can be
briefly explained: the calculus consists of inequations of the formA � B (read:“data
type B implements, or refines data type A”) which abbreviate the fact that there is a

surjection A B
foo (theabstraction function) which has a canonical right-inverse

A
r // B (therepresentation function). That is to say,f � r = idA holds2:

A

r

''
� B

f

gg

Let � denote theconcrete invariantwhich emerges as characteristic predicate of
the range ofr, that is to say,� b holds wherever there exists at least onea 2 A such
thatb = r a. Becauser is always injective, one can writeA �= B�, whereB� denotes
the subset ofB which satisfies concrete-invariant�. So the replacement of low-level
structureB by abstract structureA is safe provided� is known to hold in the particular
situation in hand — a kind of reverse specification via “concrete invariant discharge”.

There may exist two or more candidate laws for invariant discharge, for instance
C �= B competing withA �= B�. It is clear thatB should be reversed either toA in
case� holds or toC in case holds. Let us see a very short illustration, expressed in
VDM-SL notation: a pair of relational tables sharing the same primary-key type,

2 idA denotes the identity function on data typeA.



CMOD :: T1: map A to B
T2: map A to C;

(CMODstands for “concrete model”) may either be isomorphic to

AMOD1 = map A to BandC;
BandC :: A1: B

A2: C;

(AMOD1stands for “abstract model 1”) in case concrete invariant

inv mk CMOD(t1,t2) == dom t1 = dom t2

happens to hold overCMOD, or be isomorphic to

AMOD2 = map A to BorC;
BorC = CaseB | CaseC;
CaseB :: K: B;
CaseC :: K: C;

in case concrete invariant

inv mk CMOD(t1,t2) == (dom t1) inter (dom t2) = fg

happens to hold overCMOD(AMOD2stands for “abstract model 2”). These facts are con-
cisely expressed in the “algebraic” notation of the calculus [19, 20] as follows, where
the names of the relevant abstraction and representation functions are made explicit3:

A * B � C

unjoin

,,
� (A * B)� (A * C)

join

kk (1)

ie. the fact which justifies the reversing ofCMODinto AMOD1, and

A * (B + C)

uncojoin

,,
� (A * B)� (A * C)

cojoin

ll (2)

ie. the one underlying the reversing ofCMODinto AMOD2.

3 The finite-mapping datatype (bi)functorA * B translates tomap A to B in VDM-
SL. Functionsjoin and unjoin are the finite-mapping instantiations of polytypic func-
tions zip and unzip, respectively, see [14] and [23]. A library of about fifty such func-
tions, written in the CAMILA [3] formal notation, is available from the calculus web-site
http://www.di.uminho.pt/˜jno/html/setshp.html .



Relational database reverse-specification requires a relatively modest set of data-
transformation laws4. Besides the two laws mentioned above, thedom function wit-
nesses a very useful isomorphism between finite sets and partial finite mappings,

2A

set2fm

))
�= A * 1

dom

hh (3)

which expresses the equivalence between VDM-SL data modelsset of A andmap
A to nil . Another law which plays a prominent rˆole in relational data formal calcu-
lation is

A * (B � (C * D))

unnjoin

,,
� (A * B)� (A� C * D)

njoin

ll
(4)

From left to right one infers composite keys out of nested finite mappings. From right
to left (reverse direction) it merges two tables which share a common (sub)key.

Let us see a very simple “toy” example. Suppose that we want to reverse the database
structure of a na¨ıve “bank account management system” informally described by the
following E-R diagram:

Balance

Accounts
M

Name

AccHolderss s�
�H
H
�
�H

H

N

�
�

�


�
�

�


This diagram is easy to express in terms of the KARMA formal meta-data standard.
If we ask the tool to output the VDM-SL model corresponding to this diagram we get
three relations (ie. sets of tuples)5:

-----------------------------------------------------
-- VDM-SL type & data of Sets Abstract model.
-----------------------------------------------------
-- Generated Automatically by KarmaSets tool.

4 The synthesis of recursive data-models from relational, “flat” models, which is a standard result
of the calculus [20], has not yet been incorporated in the tool.

5 The particular choice of identifiers is not totally obvious and has to do with some details of the
tool which are described later.



-----------------------------------------------------

types

Sets ::
P1: set of Inf_1
P2: set of Inf_2
P3: set of Inf_3 ;

Inf_1 ::
P1: AccountId_01
P2: Balances_meta01 ;

Inf_2 ::
P1: AccountId_01
P2: AccHolderId_02 ;

Inf_3 ::
P1: AccHolderId_02
P2: Details_meta02 ;

Balances_meta01 ::
P1: Balance;

Details_meta02 ::
P1: Name;

AccountId_01 = seq of char;
AccHolderId_02 = seq of char;
Balance = seq of char;
Name = seq of char;

At any stage the tool can be asked to output the VDM-SL specification of the current
version of the model under reversal. Once the integrity constraints of the diagram are
taken into account, the main body of the model is converted to

Sets ::
P1: Inf_1
P2: map AccHolderId_02 to Details_meta02 ;

Inf_1 ::
P1: map AccountId_01 to Balances_meta01
P2: map Inf_2 to nil ;

Inf_2 ::
P1: AccountId_01
P2: AccHolderId_02 ;

The two occurrences of attributeAccountId 01 provide an opportunity to trigger
law (4) above. The tool will therefore re-write the model to



Sets ::
P1: map AccountId_01 to Inf_1
P2: map AccHolderId_02 to Details_meta02 ;

Inf_1 ::
P1: Balances_meta01
P2: map AccHolderId_02 to nil ;

Finally, law (3) can be applied to the second component ofInf 1 and we obtain

Inf_1 ::
P1: Balances_meta01
P2: set of AccHolderId_02 ;

This is in fact how one would specify the “toy” bank account system above: two fi-
nite mappings, one describing the balance and set of account holders assigned to each
account identifier, and the other one describing the details of account holders6.

4 Application to Legacy Information Systems

Legacy information systems are normally poorly documented. Reverse-specification
decisions such as the ones required above can only be made either by informal inspec-
tion (interviews with systems users) or by concrete-invariant exception statistics. In [21]
the former approach was used because the whole task was carried out manually. With
the advent of the KARMA formal standard for meta-data and of the associated tool7

we started experimenting with the latter, which is in fact the one adopted (albeit very
informally) by the companies of the KARMA consortium. The tool keeps track of both
the “abstraction function so far” and of the associated representation function. The pro-
totype makes it possible to bind sample data to its meta-data. By applying, for each
candidate law,r �f to the sample data one is able to filter invalid records out and decide
upon which law to adopt on a statistical basis (the less number of invalid records the
better).

Some extra functionality is available which is of great help in coping with large
information systems’ meta-data and addresses a very important question: from which
relational tables should one start the analysis? First, attributes which do not partici-
pate in the referential integrity of the information system are factored out as “meta”
attributes (eg.Details meta02 ). Based on the transitive closure of the graph which
expresses such a referential integrity (this basically records the intertwining among pri-
mary and foreign keys), one is able to “cluster” closely related meta-data and restrict
the analysis to each particular cluster. Clusters are identified by numbers which become
apparent as figures which the tool attaches to the output VDM-SL identifiers (eg.01 in
AccountId 01).

6 See [2] for details of the opposite forward engineering calculation,ie. the derivation, from this
specification, of the relational model which we started from.

7 Currently available as a prototype (about 8000 lines of CAMILA code, including some test
data).



For instance, in the Student Records database one gets a fairly large cluster (20
tables, that is 38%) having to do with students, a second one (9 tables, 17%) having to
do with courses and then a collection of smaller clusters corresponding to less relevant
information structures.

5 Summary and Current Work

Reference [21] had shown how to obtain a formal reverse engineering discipline for
free, simply by reversing the order of application of the laws of a data refinement cal-
culus [20]. But this still required a lot of informal work and interaction with the target
information system maintenance team.

The KARMA project has merged such a theoretical background with the experience
gathered in the very large data quality contracts which the companies of the consortium
have been involved into, in recent years. These companies expect to gain competitive-
ness on the methodological side, even within the scope of existing tools.

On the technical side, we would like to provide mechanical support for two par-
ticular aspects of the formal reverse engineering discipline sketched in [21]. First —
and based on former work on formally specifying temporal information systems [10,
4] — the ability to spot and adequately reverse thetemporal dimensionof information.
Second, we would like to combine formal reverse engineering with object-oriented re-
engineering. The inference of an object-oriented data-model from a formal model, as
sketched in [21], could be expressed in VDM++ [11] or combined with work on for-
malizing UML, for instance [5].

Last but not least, we would like to move further to reversing the operations (trans-
actions). The clustering process on operations is described in [21]. The definition of an
algebra supporting operation reasoning is, however, still incomplete and calculations
are too lengthy — seeeg.the algebra and calculations onselective updatingpresented
in [22].

6 Related Work

Most work in the literature refers to formal reverse engineering of algorithmic code, in
particular resorting towp-calculi, see eg. [7, 9].

A clever use of type-inference techniques todecompile(that is, reverse engineer) C
programs from target machine code is described in [17]. Type reconstruction is based on
Milner’s algorithm and includes the process ofdata structure reconstruction. As hap-
pens in our approach, this provides evidence that reverse engineering should “always”
be preceded by datatypereconstruction— isn’t forward engineering always based on
datatypeconstruction, after all?

Other applications of formal methods in the OO-analysis of existing software (eg.
[6]) include the use of PVS (Prototype Verification Systems) formal tools but do not
have a calculation flavour.



References

1. P. Adriaans, D. Zantinge, and Peter Adriaans Syllogic.Data Mining. Addison-Wesley, 1996.
2. J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. Bringing CAMILA and SETSto-

gether — thebams.cam andppd.cam CAMILA Toolset demos. Technical report, DI/UM,
Braga, December 1997.[45 p. doc.].

3. J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. CAMILA : Prototyping and
refinement of constructive specifications. In M. Johnson, editor,Algebraic Methodology and
Software Technology, pages 554–559. Springer LNCS, December 1997. 6th International
Conference,AMAST’97, Sydney, Australia, 13–17 December 1997, Proceedings.

4. L. S. Barbosa. The monadic structure of time. Technical report, Dep. Inform´atica, University
of Minho, 1996.

5. J.M. Bruel and R.B. France. Transforming UML models to specifications. InOOPSLA’98
Workshop on Formalizing UML. Why? How?, 1998.

6. B.H.C. Cheng and Brent Auernheimer. Applying formal methods and object-oriented anal-
ysis to existing flight software. Technical report, DCS, Michigan State University and DCS,
California State University, 1993.

7. B.H.C. Cheng and G.C. Gannod. A two-phase approach to reverse engineering using formal
methods. InFormal Methods in Programming and Their Applications. Springer-Verlag,
1993. Lecture Notes in Computer Science.

8. J. Fitzgerald and P.G. Larsen.Modelling Systems: Practical Tools and Techniques. Cam-
bridge University Press, 1st edition, 1998.

9. G.C. Gannod and B.H.C. Cheng. Using informal and formal techniques for the reverse
engineering of C programs. Technical report, DCS, Michigan State University, 1996.

10. INESC 2361 Group. Temporalizac¸ão da NBDC. Technical report,c SONAE Company,
Maia, May 1996. Consultancy report (in Portuguese).

11. The VDM Tool Group. The IFAD VDM++ language. Technical Report IFAD-VDM-44,
IFAD, Forskerparken 10, DK-5230 Odense M, Denmark, September 1997.

12. Claudia Imhoff and Jon Geiger. Data quality in the data warehouse. InData Management
Review. April 1996.

13. ISO. Information technology — programmming languages, their environments and system
software interfaces — Vienna Development Method — specification language — part 1:
Base language, Dec. 1996. (ISO/IEC 13817-1, Geneva).

14. P. Jansson and J. Jeuring. Polylib — a library of polytypic functions. InWorkshop on Generic
Programming (WGP’98), Marstrand, Sweden, 1998.

15. C. B. Jones.Software Development — A Rigorous Approach. Series in Computer Science.
Prentice-Hall International, 1980. C. A. R. Hoare.

16. C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall
International, 1990. C. A. R. Hoare, series editor.

17. A. Mycroft. Type-based decompilation. In S. D. Swierstra, editor,ESOP’99 - European
Symposium On Programming, Lecture Notes in Computer Science. Springer, 1999.

18. F. L. Neves and J. N. Oliveira. Software Reuse by Model Reification . InWISR’95 - 6th
Annual Workshop on Software Reuse, August 28–30 1995. Charles Il, Illinois, USA.

19. J. N. Oliveira. A Reification Calculus for Model-Oriented Software Specification. Formal
Aspects of Computing, 2(1):1–23, April 1990.

20. J. N. Oliveira. Software Reification using the SETS Calculus. In Proc. of the BCS FACS
5th Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140–171. Springer-Verlag, 8–10 January 1992. (Invited paper).

21. J. N. Oliveira. A calculational approach to reverse specification, 1997. Seminar presented at
UNU/IIST, Macau, May 13th, 1997, 22 p.8.

8 Available fromhttp://www.di.uminho.pt/˜jno/ps/unu97s4.ps.gz .



22. J. N. Oliveira. A data structuring calculus and its application to program development, May
1998. Lecture Notes of M.Sc. Course (150 p.9). Maestria em Ingeneria del Software, Depar-
tamento de Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Universidad
de San Luis, Argentina.

23. J. N. Oliveira. ‘Fractal’ Types: an Attempt to Generalize Hash Table Calculation. In Work-
shop on Generic Programming (WGP’98), Marstrand, Sweden, June 1998.

24. J. N. Oliveira and A. M. Cruz. Formal calculi applied to software component knowledge
elicitation. Technical Report C19-WP2D, DI/INESC, December 1993. IMI ContractC.1.9.
Sviluppo di Metodologie, Sistemi e Servizi Innovativi in Rete. 10.

25. Jim Sterne.World Wide Web Marketing. John Wiley & Sons, 1998.

9 Available fromhttp://www.di.uminho.pt/˜jno/ps/sanl98.ps.gz .
10 Available fromhttp://www.di.uminho.pt/˜jno/ps/c1-wp2b.ps.gz .


