
The VDM+B project: Objectives and Progress

J.C. Bicarregui1, Th. Dimitrakos1, K. Lano2, T. Maibaum2, B.M. Matthews1,
and B. Ritchie1

1 CLRC, Rutherford Appleton Laboratory, UK
fjcb,theo,bmm,brg@inf.rl.ac.uk,

2 Dept. of Computing, Imperial College, London,UK
ftsem,kclg@doc.ic.ac.uk

Abstract. The VDM+B project is developing the formal underpinnings
for an integration of VDM and B enabling their co-use within one de-
velopment. In this paper, we describe the objectives for the project, the
approach being undertaken and the current status of the work.

1 Introduction

VDM[2] and B[1] are among the few formal methods currently in use by industry
and supported by commercial tools. Both are model-oriented methods for the
development of sequential systems based on �rst order calculi and set theory.
Both have a set of proof rules de�ned for formal veri�cation and validation. Both
have a formal semantics: for B this is de�ned in terms of weakest preconditions,
for VDM it is denotational. As yet, neither set of proof rules has been veri�ed
with respect to the semantics.

In earlier studies [12, 7, 11] we have noted that VDM and B have di�erent
focuses: VDM is primarily concerned with high level design and data re�nement,
whereas B in practice is most suited to low level design, algorithm re�nement
and the generation of code. We have undertaken application experiments and
development scenarios to determine the feasibility and potential bene�ts of het-
erogeneous development: using VDM, supported by the IFAD VDM Tools [25],
for early lifecycle speci�cation and validation activities; and B, supported by
the B-Toolkit[4], for later design and veri�cation tasks. The VDM+B project is
consolidating this work by developing the formal underpinnings for a combined
method employing VDM and B in heterogeneous development.

In this paper, we review the context and motivations for the VDM+B project,
discuss the major issues for establishing the formal foundation of the integration,
and review current progress and plans for their resolution.

2 Context

VDM and B are two of the most industrially used formal methods. Both have
been used for a variety of applications and are supported by commercial toolkits.

,,PPSSOOHHPHQWDWLRQPHQWDWLRQ

'HVLJQ'HVLJQ

6SHFLILFDWLRQ6SHFLILFDWLRQ

6\6\VVWHP 7HVWWHP 7HVW

Unit Test

,Q,QWWHJUHJUDDWWLRLRQ 7Q 7HVWHVW

$$QDO\VLQDO\VLVV$$QDO\VLQDO\VLVV

B

VDM

Figure 1. The lifecycle identi�ed for heterogeneous development using VDM and B

VDM's origins lie in the de�nition of programming language semantics in
the 1970s, but it has for many years been used in systems speci�cation and
development generally[26]. Areas to which VDM has recently been applied in-
clude railway interlocking systems, ammunition control systems, semantics of
data ow diagrams, message authentication algorithms, relational database sys-
tems and medical information systems. A directory of VDM usage examples is
available[42].

A development of VDM and Z, Jean-Raymond Abrial originated B whilst
at the Programming Research Group at Oxford University in the early eight-
ies. It was further developed by British Petroleum Research and DIGILOG and
supported forms are now commercially available from B Core Ltd. and Steria
Technologies de l'Information. Examples of its use include the development of
communication security protocols, subway speed control mechanisms, railways
signalling, executable database programs and data processing systems. A direc-
tory of B is maintained at [5].

Although VDM and B have the same expressive power in theory, a compar-
ison undertaken during the B User Trials project1 observed [12] that VDM
encourages a style of speci�cation where implicit invariants and explicit frames
are employed with postconditions to describe operations as abstractly as possi-
ble whereas the representation of operations with explicit invariants and implicit
frames employed in B encourages overspeci�cation and the introduction of im-
plementation bias reducing possible non-determinism. In both notations, the
invariant is useful for quickly conveying an understanding of the reachable val-
ues of the state. However the use of invariants in operation de�nitions di�ers. In
B, postconditions (in the form of generalised substitutions) have to be written
so as to ensure the maintenance of the invariant. In VDM the state invariant
is e�ectively part of the state typing information, and as such is assumed to be
maintained in addition to the postcondition.

VDM's implicit maintenance of the invariant led to the choice discussed in
[12] of how much of the information in the invariant is repeated in a postcon-
dition. There is often some tension between the most concise form that relied
on properties of the invariant for its correctness, and a longer, but more explicit
form, that included some redundant information. This choice can be seen as an
opportunity to prove the stronger forms from the weaker. Which form is chosen
may make a signi�cant di�erence to the complexity of the proofs: the form that
most clearly conveys the information may not be the form that will be most
usable in proofs. Indeed, the stronger form is more likely to be helpful when the
speci�cation is being proved to be a rei�cation of another, and the weaker form
when it is itself being rei�ed.

In the B notation, on the other hand, one writes operations so as to imply
the preservation of the invariant. This can encourage a tendency to describe how
the invariant is maintained, which may lead to less abstract speci�cations. The
greater programmatic feel of the B notation is reinforced by the use of generalised
substitutions, as opposed to VDM's relational post-conditions. Although the
two forms have the same expressive power, in some cases (as for example in
slave in the b2 machine described in [12]) we found it convenient to give greater
algorithmic detail in the B version. This would appear to imply that the B
notation is more useful for the development of algorithms. Indeed, the process of
operation decomposition has been given greater attention in the B methodology
than for VDM. By contrast, perhaps VDM's relational postconditions give a
greater facility for non-algorithmic speci�cations of complex operations.

This di�erence arises from the di�erent focus of the two methods and has
led to the development of di�erent functionality in the supported forms of the
methods. Table 1 shows the complementary nature of the features currently
provided by each toolkit.

1 The B User Trials project (1992-1995) [IED4/1/2182] was a collaborative project
between RAL, Lloyds Register of Shipping, Program Validation Limited and the
Royal Military College of Science and played a major part in bringing the B-Toolkit
up to industrial quality. A summary of the project is in [8].

The MaFMeth project2 was the �rst project to bring VDM and B together
to exploit their di�erent strengths. This was an ESSI \application experiment"
assessing a methodology covering the whole life cycle combining the use of VDM
for early development with B for re�nement and code generation, the develop-
ment lifecycle depicted in Figure 1. The project demonstrated the commercial
viability of the use of formal methods by collecting quantitative evidence of the
bene�ts in terms of both fewer faults made in development and their earlier
detection. The translation between notations was however conducted informally
and the results show that this translation was error prone, not only because of its
manual nature but also because of the lack of clarity in the correspondence be-
tween the notations. However, it was found that animation, test case generation
and proof are all cost-e�ective ways to �nd faults in formal texts [7].

The Spectrum project3 was a feasibility study into the commercial via-
bility of integrating the IFAD VDM tools and B-Toolkit. The evaluation was
being undertaken from three perspectives: the industrial bene�t of using the
combined tool, the technical feasibility of the combination of the two tools and
the commercial case for the development of a combined tool. The project devel-
oped heuristic methods for systematic transformation between speci�cations in
VDM and B which could form the basis of machine support [32, 11]. However,
within the feasibility study there was little scope for the research necessary to
unify the two methodologies in terms of their underlying semantics and proof
rules.

Task IFAD VDM Tools B-Toolkit

Requirements capture � �
Visualisation � �
Abstract Speci�cation

p �
Type checking

p �
Prototype code generation

p �
Test coverage

p �
Animation/Execution

p p
Modularity � p
Re�nement � p
Proof � p
Final Code generation � p
Design documentation � p
Version Cntl/Con�g Mgmt � �

Keyp
= good support

� = some support
� = no support

Table 1. The complementary functionality of the VDM and B Toolkits.

2 The MaFMeth project (1994-1995) [EC ESSI 1061] between Bull SA, B-Core UK
Ltd, and RAL. A summary of the key results of the project is in [7].

3 The Spectrum project (1997) [EC ESPRIT 23173] between RAL, GEC Marconi
Avionics, Dassault Electronique, Space Science Italia, CEA, IFAD and B-Core UK
Ltd.

3 Issues

In recognition of the pragmatic nature of the earlier approaches to heterogeneous
development using VDM and B, the VDM+B4 project has been established.
The goal of this project is establish a formal foundation of heterogeneous devel-
opment in VDM and B. However, there are signi�cant di�erences in approach
have been taken in the design of VDM and B. In this section we discuss some of
these issues.

3.1 Core elements and foundational di�erences

The core elements of the two languages are very similar. Both expression lan-
guages are based on sets, sequences, tuples and relations. Both de�ne abstract
machines in terms of state, invariant and operations. Both have explicit pre-
conditions for operations. However, VDM de�nes state transitions via relational
postconditions, whereas B uses generalised substitutions. Both languages have
formal semantics. For B, this is given by Abrial [1] as weakest preconditions. For
VDM, it is denotational [2, 29]. A translation between these two forms is given
in [1], however, for our purposes this needs to be extended to cover a wider class
of expressions.

An obvious point of concern is the foundational di�erences in the languages.
VDM is based on the 3-valued Logic of Partial Functions (LPF) whereas B is
based on classical First Order Predicate Calculus. Work on developing proof
support for VDM [3] has shown that in a framework with dependent types, such
as PVS [34], most speci�cations which employ partial functions for their expres-
sivity can be directly translated to functions which are total over a subdomain.
The remaining uses of partiality represent a particular form of lazy concurrent
disjunction which is built into LPF but not available in B.

3.2 Proof support

Although the two notations are founded on a di�erent logic, the proof rules in the
B-Toolkit do have a avour more akin to those of VDM where typing hypotheses
are used as guards to the expression construct introduction and elimination rules.

Both languages have a comprehensive set of proof rules de�ned and sup-
ported. For B, they are de�ned in [1] and built into the B-Toolkit. For VDM,
they were developed in the Mural system[13] and published in [10].

In the absence of a standard form for proofs that would enable proofs devel-
oped in one system to be checked with another, it is important for the certi�ca-
tion of formal developments to be able to \second source" the theorem proving
capability. This will allow proof support to be developed in a number of systems
and contribute to the certi�cation of theorem proving capability for use in safety

4 The integration of two industrially relevant formal methods.
(VDM+B) (1998-2001) [EPSRC GR/L68452 and GR/L68445] between RAL and
Imperial College London

critical systems. Current support for the languages has not been certi�ed in this
way.

3.3 Modular structuring

A further area of di�erence is higher level modular structuring. Several ap-
proaches to modularisastion exist for VDM. The VDM standard language, VDM-
SL, has no structuring mechanism although a form of modularisation is given
as an informative annex, the IFAD VDM Tools supports a simple form of mod-
ules and VDM++ [28] has an object-oriented notion of structuring based on
classes. On the other hand, the ability to incrementally present a speci�cation
is central to B where implementations can be constructed in a structured way
by composing implementations of separate components.

Thus transformations between structured speci�cations in the two formalisms
should, in some sense, preserve the locality of information. For example, in mov-
ing from a single module of VDM where the structure is based around a hier-
archical de�nition of record types, we would hope to achieve a B speci�cation
which used machines to mirror the structure of the records. The danger is that
in \coding up" such a complex re�nement into the translation we risk the sound-
ness of the translation. One possible approach [32] is for the translation to result
in two levels of B speci�cation and a re�nement between them. In this way the
translation is kept simple, whilst the complexity of the re�nement is localised
within the one formalism and hence more amenable to veri�cation.

4 The VDM+B project: Progress to date

The VDM+B project is developing the formal underpinnings for an integration
of VDM and B enabling their co-use within one development. To date, in the
�rst year of the VDM+B project, attention has been focused on underpining the
co-use of VDM and B by the application of a general framework for integrating
heterogeneous logics. Macroscopically, our approach to the integration of support
for VDM and B, or indeed various other formal notations, can be divided into
three interdependent steps:

1. Specifying the intended interrelations at the syntactical level of the formal
notation.

2. Establishing compatible interrelations between the axiomatic (logical) se-
mantics and between the the denotational semantics of the formal notations.

3. Integrating the consequence systems that accommodate the axiomatic (logi-
cal) semantics of the interrelated formal notations into one compound conse-
quence system. This integration should locally conserve each entailment, and
keep proof and denotational semantics distinct and local to each component.

Investigations for stage 1, designing (partial) translations between the VDM
and B notations, have been conducted in the Spectrum and MaFMeth projects.
(See [11, 32, 7].) In the current project, we have focussed on developing sound

UnderlyingUnderlying
ConsequenceConsequence

SystemSystem
for for

VDMVDM

UnderlyingUnderlying
ConsequenceConsequence

SystemSystem
forfor

BB

VDM VDM denotationaldenotational
SemanticsSemantics

B B denotationaldenotational
SemanticsSemantics

9'0 QRWDWLRQ9'0 QRWDWLRQ % QRWDWLRQ% QRWDWLRQ

,,QQWHWHJJUDWHUDWHGG DD[[LLRRPPDWDWLF VLF VHHPPDDQQWWLFVLFV,,QQWHWHJJUDWHUDWHGG DD[[LLRRPPDWDWLF VLF VHHPPDDQQWWLFVLFV
99''00��%%99''00��%%

FFRRPSPSOOHHWWHHQQHVHVVV

6H6HPDPDQWLQWLFFVV
DDVVVVLJLJQPQPHQWHQW
�V�VRRXXQQGGQHQHVVVV��

6H6HPDPDQWLQWLFFVV
DDVVVVLJLJQPQPHQWHQW
�V�VRRXXQQGGQHQHVVVV��

FFRRPSPSOOHHWWHHQQHVHVVV

SSDDUUWWLDLDO WUDO WUDQQVVOODWDWLLRRQQ

Figure 2. A pictorial overview of our approach to the integration of VDM and B.

logical and mathematical foundations for steps 2 and 3, providing a \unifying"
framework for formally presenting the logical (axiomatic) semantics of formal
notations, and a method to synthesise the integrated logical (axiomatic) seman-
tics. The main idea of the latter is, on the one hand, to produce a common
logical framework where each formal notation can be faithfully interpreted and,
on the other hand, to reuse the proof calculi and denotational semantics of each
formal notation and hence avoid (re)building those for the integrated system. As
far as proof support is concerned, in particular, we do not intend to replace the
purpose-built proof support with a more complex (and probably less e�cient)
general purpose theorem prover that could be used by all components. Our inten-
tion is to build a compound logical system which can accommodate the existing
axiomatic semantics for all the component notations, and hence support their in-
teroperability, while keeping proof (and denotational semantics) distributed and
localised to each component.That is, to allow existing proof structures to be used
whilst identifying the structural conditions which ensure the sound interpretation
of theorems from one formalism into the other. Of course, the mathematically
sound and pragmatically meaningful integration of the components' entailments
also depends on the correct interrelation of the components' (denotational) se-
mantics and a�ects the interoperability of the associated proof mechanisms.

In our study of the problem of integrating heterogeneous formal notations
with emphasis on the integration of the axiomatic (logical) semantics, we have
blended together concepts and methods from formal logic, categorical algebra
and institution theory. We use Meseguer's General Logics [33] as a \unifying"
presentation of the logical (axiomatic) and the denotational semantics of a formal
notation, related via a soundness condition. We also use from [14] the concept
of a non-plain mapping of Logics (which is a slight adaptation of Meseguer's
\(simple) map of logics" in [33]) as the basic correctness preserving means of
relating Logics.5

Using this framework, we have modelled the interpretation of LPF into clas-
sical (in�nitary) logic introduced by Jones and Middelburg in [27] to provide
an indicative example of an interesting non-plain mapping of Logics in [17]. We
have also studied a general method for integrating a collection of interrelated
Entailment Systems, the logical consequence oriented component of Logics. This
method is presented in [17], it is related to the \attening" of indexed categories
analysed by Tarlecki, Goguen and Burstall in [41] and extends a method that
was �rst introduced in [14] using the Grothendieck construction [24, 6] in an
essential way.

One interesting outcome of this research has been to provide a su�ciently
clear basis for explaining why, where and when the structural axioms, that may
assist in interpreting built-in elements of a \source" logic into explicitly spec-
i�ed artefacts over a \target" logic, give rise to locality axioms that assist in
logical reasoning along language translations inside the integrated Entailment

System. We are currently analysing the pragmatic impact of these results and
investigating how this can be applied to assist the integration of tool support for
interrelated formal notations. We focus on how we intend to apply this method
to facilitate the co-use of existing support for the VDM and B formal methods
over an integrated axiomatic semantics. The reader is referred to [17] for a more
detailed presentation and to [14] for a technical analysis of the employed formal
framework.

4.1 The rôle of general logics

For practical purposes, the semantics of a formal notation, such as VDM or B, is
expressed in a logic. First of all, the grammar of the logic is used to specify the
built-in types and operations of the formal notation and to interpret the user
de�ned types and operations. Secondly, the entailment (logical consequence) of
the logic provides the basis for describing the axiomatic semantics of the speci-
�cations and for proving theorems entailed by the speci�cations with respect to
this axiomatic semantics. Finally, the models of the logic provide the structures
on top of which the denotational semantics of the formal notation are de�ned.

5 A map of Logics encodes a correctness preserving covariant interpretation of the
entailment component of the source Logic into the target Logic coupled with a con-
travariant mapping at the model level. A non-plain map of Logics localises these
interpretations in the area bounded by a family of structural axioms.

The interrelation of formal notations is grounded on the interrelation of the un-
derlying logics describing their semantics. In general, the logical semantics of
VDM speci�cations are provided by the colimit objects (theories) of �nite dia-
grams in the �nitely cocomplete category of LPF theory presentations while the
logical semantics of B speci�cations are provided by the colimit objects of �nite
diagrams in the �nitely cocomplete category of �rst order speci�cations.

4.2 The rôle of non-plain maps of logics

The basic idea behind a map of logics is to interpret the syntax while preserving
the entailment and keeping the satisfaction invariant. The interpretation of the
syntax follows essentially the same pattern as within a single formalism. First,
map the category of source signatures to the category of target signatures and,
second, encode the operation of the source grammar functor into the target in or-
der to obtain a mapping of sentences over the source into accordingly structured
sentences over the target. The preservation of the entailment and the invari-
ance of the satisfaction, on the other hand, may be viewed as complementary
instances of the general correctness preservation property for the case of map-
pings between logics. Two, perhaps more familiar, complementary instances of
the same general correctness property are the theorem preservation property of
theory interpretations and the model invariance along signature translations in
the same logic. The preservation of the entailment via Entailment System mor-
phisms provides a relevant correctness criterion for translating theories from one
entailment system into another while the invariance of the satisfaction provides
a relevant correctness criterion for relating sentences in one logic with models in
another.

One signi�cant di�erence of (non-plain) maps of logics compared to other
approaches to relating logical consequence systems or satisfaction systems, is
that a map of logics correlates each signature � in the source logic with a the-

ory presentation f(�) = hf hsi(�); f hai(�)i in the target logic { instead of just a
signature in the target logic, as is common in the literature6. In many applica-
tions of formal logic in information systems engineering, plain morphisms which
map signatures to signatures are not exible enough. It is often necessary to
map built-in elements of one logic into explicitly speci�ed (sometimes precisely
de�ned) elements of another logic. The (non-plain) maps of logic overcome such
problems by supporting the interpretation of theorems over a signature � of the
source logic into theorems over the corresponding signature f hsi(�) in the target
logic with a set of structural axioms f hai(�) in the language of f hsi(�). These
structural axioms assist in interpreting some features of the source consequence
that can be speci�ed in the target logic but not simulated directly by the target
consequence.

The interpretation of LPF into classical logic introduced by Jones and Mid-
delburg in [27], for example, can be modeled by means of a non-plain map of

6 See [30, 31] for a comparison of various mappings between Institutions, and further
references.

logics. In this case, the signature transformation and the corresponding struc-
tural axioms take the following form:

f maps each LPF signature � = hS;F; P i to a classical signature f hsi(�) =
h�;�i consisting of

1. A set � of function symbols consisting of
(a) three constants: t,f and ";
(b) an n-ary function symbol ff for each n-ary function symbol f 2 F of

the LPF-signature �;
(c) an n-ary function symbol fp for each n-ary predicate symbol p 2 P of

the LPF-signature �.
2. A set � of predicate symbols consisting of

(a) Two unary predicates U and B;
(b) A unary predicate symbol �s for each type symbol s 2 S of the LPF-

signatures �.

f assigns to each LPF-signature � = hS;P; F i a setf hai(�) of structural axioms

on the classical logic signature f hsi(�) which is de�ned as follows:

f hai(�) = Dom [Truth [Type� [Func� [pred�

where

Dom = f U(")^ 9y � U(y)^ :(y =") g;
Truth = f :(t = f)^ :(t =") ^ :(f ="); 8b � B(b)$ (b = t _ b = f _ b =") g;
Type� = f 8y � s(y)! U(y) ^ :(y =") : for every type symbol s 2 S of � g;
Func� = f 8y1 : : : yn � U(y1) ^ : : : ^ U(yn) ! U(f hsi(f)(y1; : : : ; yn) : for every

n-ary function f 2 F of � g;
Pred� = f 8y1 : : : yn � U(y1) ^ : : : ^ U(yn) ! B(f hsi(p)(y1; : : : ; yn) : for every

n-ary predicate symbol p 2 P of � g;

The structural axioms in Dom and Truth assert that the domain of values
contains at least one value di�erent to the special element (") that is used for
interpreting non-denoting terms, and that the domain of truth values contains
exactly two distinct truth values in addition to the the special element (") that
is used for interpreting non-denoting formulae. These structural axioms do not
depend on the structure of �. The structural axioms in Type�, Func� and
Pred�, on the other hand, depend on the internal structure of �. These axioms
state that the type interpretations concerned do not contain the special value ",
that all the functions concerned are inside the domain U and that all predicates
concerned are range over the truth value domain B. There are also formulae
stating that free variables always denote. See [17] for further details on this
example.

Intuitively, the above mentioned form of correctness preservation states that
the translation of a theorem proved in the source logic A results in a lemma in
the target logic B, and can be therefore used for proving theorems in B, only
when some explicitly speci�ed structural conditions hold. In fact, this weaker
version of correctness preservation again appears to be an instance of a more

general conditional correctness preservation property, another instance of which
was observed by Fiadeiro and Maibaum in [22] and [20] while building calculi
to support concurrent and object-oriented system speci�cations. This analogy is
further emphasised in [17] where we show why, where and when the structural
axioms that support interrelating a collection of logics are \internalised" into
locality axioms which support formal reasoning inside the integrated logic. (See
also Appendix D. of [14] for a more detailed technical analysis.)

4.3 A formal foundation for the integration

In [17], we present a method to integrate any small graph (diagram) DE con-
sisting of consequence systems (as nodes) and non-plain maps between them
(as arrows) into a weakly structural consequence system E . Weakly structural
consequence systems are distinguished by the fact that the family of entailment
relations presenting logical consequence is only conditionally stable under trans-
lation. This essentially means that, in the context of a proof, the preservation of
correctness by common language modi�cations, such as addition of new symbols,
renaming or identi�cation of existing symbols, etc., relies on the satisfaction of
a set of axiomatic conditions (locality axioms) in the modi�ed language

The main idea of the integration is to \internalise" inter-entailment reasoning
along non-plain maps of DE into logical reasoning along signature translations
supported by locality axioms in a way that the entailments are locally conserved
inside the integrated system. That is, the theorems proved at each component
are the same before and after the \internalisation". In other words, the semantics
of the component consequence systems are not a�ected by the integration. Each
signature � in a node X of DE becomes a signature \� labeled by X" hX; �i in
E . The grammar and the entailment of E is synthesised from the grammars in
the nodes of E so that the language of hX; �i is given by the language of � and
the entailment on � inside the consequence system X. The signature morphisms
inside E are the signature morphisms inside each node of DE together with some
\new" morphisms induce by the integration. The latter can be considered as
tuples hf; yi for each arc f:X�!Y ofDE and each signature morphism y:f(�) �!
�0 with (�) being the Y-image of a signature � in X via f. The composition of
signaturemorphisms in E reduces to a combination of the composition operations
inside each node of DE and the composition of non-plain maps. Furthermore,
the logical consequence in E is weakly structural; that is, the structural axioms
of the non-plain maps that correspond to the arcs of DE become locality axioms

along signature morphisms in E .
If this method is applied to the classical interpretation of LPF [27] mentioned

in section 4.2 then the following signature translations and locality axioms are
induced by the integration:

1. if i:A�!B is a theory interpretation between LPF theories then

hLPF; ii : hLPF;Ai �! hLPF;Bi

is a theory interpretation in the integrated consequence system;

2. if i:A�!B is a theory interpretation in classical logic then

hCL; ii : hCL;Ai �! hCL;Bi

is a theory interpretation in the integrated consequence system;
3. if A = h�A;Ai is an LPF theory, B = h�B ;Bi is theory in classical logic and

�:f hsi(�A)�!�B is a translation from the classical logic signature f hsi(�A)
to the classical logic signature �B , where f

hsi(�A) is the classical image of

the LPF signature �A given in section 4.2 based on [27], then i = ��f
hsi
�A

is
a theory interpretation in the integrated consequence system i�
(a) the transformations of the LPF �A-sentences in A into classical logic

�B-sentences provided by i, are entailed from B in classical logic, and
(b) the �-translations of the classical logic sentences in f hai(�A) are entailed

in classical logic by B.

See [17] for a more detailed analysis.
In the case of B and VDM this has the e�ect that, given a translation from

VDM into B, the (translations of the) theorems in (the LPF-interpretation of)
a VDM speci�cation S1 can be used as lemmata in an appropriately rich B
speci�cation S2 only when certain conditions (described by the locality axioms)
are satis�ed in (the �rst order classical theory interpreting) S2.

The basic advantages of this method for the correctness preserving integra-
tion the logical semantics of inter-dependent speci�cation formalisms include the
following:

1. a compound consequence system is produced which can accommodate the
axiomatic semantics of each component formalism;

2. remote interentailment reasoning along non-plain mappings is transformed
into internal reasoning along language translations;

3. the grammar and the entailment underpining the axiomatic semantics of each
component formalism are locally conserved in the result of the integration;
hence
(a) the existing proof support for each component formalism can be reused;
(b) the denotational semantics for each component formalism are not af-

fected by the integration and they can be reused;
(c) theorems proved in one formalism X can be used as lemmata in a proof

conducted in a compatible signature of an interrelated formalism Y , pro-
vided that the corresponding locality (structural) axioms are satis�ed.

A detailed description of this method is given a separate technical report [17].

4.4 Issues (re)addressed in the context of the VDM+B project

The VDM+B project has been investigating the formal underpining of the co-
use of interrelated heterogeneous speci�cation formalisms with emphasis on the
logics underlying the VDM and B formal methods. The VDM+B project will
continue this development and also address the other issues outlined in section 3.

Core elements and foundational di�erences So far, in the �rst year of
the VDM+B project, we have identi�ed a general logical framework which we
consider to provide a useful foundation for the formal underpining of the co-use
of the VDM and B methods in a formal development. In this framework one
can uniformly present the axiomatic and denotational semantics of VDM and
B, and interrelate them by means of correctness preserving mappings. We have
also provided a general method for integrating the heterogeneous consequence
systems which accommodate the axiomatic semantics of VDM and B and iden-
ti�ed the need of structural axioms in order to support multilogical reasoning in
the integrated consequence system.

It is important to stress that so far our intention has not been to blend se-
lected features of VDM and B into a new single formalism, but to develop a
unifying framework which can accommodate the co-use of VDM and B with re-

spect to the structure of the component formalisms and the (explicitly speci�ed)
interpretations between them.

Proof Support With respect to proof support (subsection 3.2), we recognise
that in practice it may be hard to to reuse or transform proofs (derivations)
across di�erent formalisms. Consequently, we have taken care so that the in-
tegration method we are developing will allow existing proof structures to be
used whilst identifying the locality conditions which ensure the sound interpre-
tation of theorems from one formalism into the other. Hence, facilitating the
interoperability of the proof support in the integrated system, seems to be an
advantageous alternative to redesigning a more complex, and probably less ef-
�cient, proof calculus for the compound system. We believe that the integrated
axiomatic semantics should enable the interpretations of VDM and B to be ex-
pressed as separate modules within one supporting system. The intermodular
translations and the associated locality axioms would then be realised by a third
interfacing module. This will allow the co-use of existing or new purpose build
provers for VDM and B.

Modular structuring With respect to structuring (section 3.3), we plan to
interpret a structured speci�cation as a diagram in the category of theory pre-
sentations over the logic that is used for the axiomatic semantics. Di�erent struc-
turingmechanisms give rise to distinctly shaped diagrams of theory presentations
with di�erent types of theorem preserving morphisms as arcs. Under some gen-
erally weak assumptions, theory presentation diagrams can also be treated as
formal objects in a (functor) category, which relate to each other by diagram
morphisms built from compatible families of theory presentation morphisms[38]
equipped with a notion of parallel composition which facilitates the orthogonally
modular horizontal and vertical re�nement and structuring of complex speci-
�cations.7 Somewhat similar diagrammatic speci�cations can also be used for

7 Diagrammatic presentations and diagram morphisms based on compatible families
of parallel theory interpretations morphisms have been successfully applied in state-

describing the structured theories of Maude [18]. Based on Institution-theory,
Dur�an and Meseguer recently proposed in [19] a method to construct a model
theory S(E) on top of a model theory E , such that (hierarchically) structured I-
theories treated as ordinary theories of I. We plan to investigate the applicability
of this method in our work. Also the use of parametric theory presentation dia-
grams proposed by Dimitrakos in [15, 16] supports the incremental construction
of complex parameter speci�cations from simpler modules. It also allows the ex-
plicit speci�cation of special relations between the possibly interconnected, but
yet individually distinct, constituent speci�cation modules of the parameter and
the body speci�cation. The ability to induce an instantiation from a compatible
family of parallel morphisms reduces the instantiation e�ort: the instantiation of
a complex parameter is decomposed to family of simpler parallel morphisms from
the constituents of the parameter. It also provides the basis for synthesising the
instantiation of a complex parameter from the instantiations of its constituent
modules, and it facilitates the compatible instantiation of nested parameterisa-
tions. In recognition of the fact that this is a more problematic aspect of both
formalisms, we hope that this approach may contribute to the development of
elegant and useful structuring mechanisms for both formalisms.

5 Conclusion

This project has been investigating the formal underpining of the co-use of inter-
related heterogeneous speci�cation formalisms. We have blended together con-
cepts and methods from speci�cation theory, formal logic and categorical algebra
in order to:

1. introduce an abstract mathematical framework for
(a) uniformly presenting the axiomatic and denotational semantics of spec-

i�cation formalisms, and
(b) interrelating such presentations by means of correctness preserving map-

pings;
2. provide a general method for integrating the heterogeneous consequence sys-

tems that accommodate the axiomatic semantics of interrelated speci�cation
formalisms; and to

3. explain why and when the integrated consequence system may need the
additional support of structural axioms in order to support multilogical rea-
soning.

It is important to stress that our intention, so far, has not been to blend selected
features of VDM and B into a new single formalism, but to develop a unifying
framework for co-using VDM and B with respect to the axiomatic semantics of
each component and their interrelation with respect to correctness preserving
interpretations between them, which need to be provided explicitly.

of-the art formal software development environments such as the Specware [37]
built at Kestrel Institute, California.

In recent years there is an increasing recognition of the fact that no single
formalism is likely to be best suited to all formal development tasks, just as no
single programming language is ideal for all applications [40, 35, 36]. Our overar-
ching aim in this project is to integrate useful formalisms without necessitating
the abandonment of existing methods and tools.

References

1. J.-R. Abrial, The B-Book : Assigning Programs to Meanings, Camb. Univ. Press,
1996.

2. Andrews et al. Information Technology - Programming Languages - Vienna De-
velopment Method-Speci�cation Language. Part 1: Base Language. ISO 13817-1,
1995.

3. S. Agerholm, Translating Speci�cations in VDM-SL into PVS, 9th International
Conference in Higher Order Logic Theorem and Its Applications, LNCS 1125,
Springer Verlag, September 1996.

4. B-Core (UK) Ltd. The B-Toolkit. Welcome page URL <http://www.b-core.com>,
1996.

5. The B method (virtual library page)
http://www.comlab.ox.ac.uk/archive/formal-methods/b.html.

6. M. Barr and C. Wells. Category Theory for Computer Science, volume 5 of Series
in Computer Science. Prentice Hall International, 1990.

7. J.C.Bicarregui, J.Dick, B.Matthews, E.Woods, Making the most of formal spec-
i�cation through Animation, Testing and Proof. Sci. of Comp. Prog. Elsevier
Science. Feb. 1997.

8. J.C. Bicarregui et al., Formal Methods Into Practice: case studies in the applica-
tion of the B Method. I.E.E. Transactions on Software Engineering, 1997.

9. J.C. Bicarregui, J. Dick, E. Woods, Quantitative Analysis of an Application of
Formal Methods, Proc. FME'96, 3rd Int. Symp. of Formal Methods Europe,
LNCS 1051, Springer-Verlag.

10. J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, R. Moore and B. Ritchie, Proof in
VDM { A Practitioner's Guide, FACIT, Springer-Verlag, ISBN 3-540-19813-X,
1994.

11. J.C. Bicarregui, B.M. Matthews, B. Ritchie, and Sten Agerholm. Investigating the
integration of two formal methods. In Proceedings of the 3rd ERCIM Workshop
on Fomral Methods for Industrial Critical Systems. May 1998. Also appeared in
Formal Aspects of Computing, 1999.

12. J.C. Bicarregui and B. Ritchie, Invariants, Frames and Postconditions: a compar-
ison of the VDM and B notations, IEEE Trans. on Software Engineering, Vol.21,
No.2, pp.79-89, 1995.

13. J.C. Bicarregui and B. Ritchie. Reasoning about VDM Developments using the
VDM Support Tool in Mural. Proceeding of VDM 91, Prehn and Toetenel (Eds),
LNCS 552, Springer-Verlag.

14. Theodosis Dimitrakos. Formal support for speci�cation design and implementa-
tion. PhD thesis, Imperial College, March 1998.

15. Theodosis Dimitrakos. Parameterising (algebraic) speci�cations on diagrams. In
Automated Software Engineering{ASE'98, 13th IEEE International Conference,
pages 221{224, 1998. An extended revised version available on request at
theo@inf.rl.ac.uk.

16. Theodosis Dimitrakos. On speci�cations parameterised by diagrams. In-
formation Systems Engineering, CLRC, Rutherford Appleton Laboratory.
Submitted for publication. An abstract also to appear at the Workshop
on Algebraic Development Techniques, France 1999. Copies available at
<http://www.itd.clrc.ac.uk/Person/T.Dimitrakos>.

17. Th. Dimitrakos, J.C. Bicarregui and T.S.E. Maibaum. Integrating Het-
erogeneous Formalisms: Framework and Application. Technical Report,
Rutherford Appleton Laboratory, February 1999. Copies available at
<http://www.itd.clrc.ac.uk/Person/T.Dimitrakos>.

18. Francisco Dur�an. A Reective Module Algebra with Appliction to the Maude
Language. PhD thesis. University of M�alaga, 1999.

19. Francisco Dur�an and Jos�e Meseguer. Structured Theories and Institutions.
Computer Science Laboratory. SRI Inernational. Submitted for publication.

20. J. Fiadeiro and T. Maibaum. Temporal Theories as Modularisation Units for
Concurrent System Speci�cation. Formal Aspects of Computing, 4(3):239{272,
1992.

21. J.L. Fiadeiro and T. Maibaum. Categorcal Semantics of Parallel Porgrams.
Science of Computer Programming, pages 111{138, 1997.

22. J.L. Fiadeiro and T.S.E. Maibaum. Generalising interpretations between Theories
in the Context of (�-)institutions. In S. Gay G. Burn and M. Ryan, editors,
Theory and Formal Methods, pages 126{147. Springer-Verlag, 1993.

23. Nissim Francez and Ira R. Forman. Superimposition for interacting processes. In
J. C. M. Baeten and J. W. Klop, editors, CONCUR '90: Theories of Concurrency:
Uni�cation and Extension, volume 458 of Lecture Notes in Computer Science,
pages 230{245, Amsterdam, The Netherlands, 27{30August 1990. Springer-Verlag.

24. A. Grothendieck. Cat�egories �br�ees et descente, Expos�e VI in Revetements Etales
et Groupe Fondamental (SGA1). Lecture Notes in Mathematics 224. Springer,
Berlin, 1971.

25. IFAD (DK). The IFAD VDM-SL Tools. Welcome page URL
<http://www.ifad.dk>, 1996.

26. C.B. Jones, Systematic Software Speci�cation Using VDM (2nd Edi-
tion), Prentice Hall, 1990. Out of print. Copies available via ftp from

<ftp://ftp.cs.man.ac.uk/pub/cbj/ssdvdm.ps.gz>.

27. C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed
classically. Acta Informatica, 31:399{430, 1994.

28. K. Lano, S. Goldsack, Integrated Formal and Object-oriented Methods: The
VDM++ Approach', 2nd Methods Integration Workshop, Leeds Metropolitan
University, April 1996.

29. P.G. Larsen, B.S. Hansen, `Semantics for Underdetermined Expressions', Formal
Aspects of Computing, Vol 7. 1995.

30. A. Martini, U. Wolter, A Systematic Study of Mappings between Institutions.
Proceedings of the 12th Workshop on Algebraic Development Techniques, Springer
LNCS 1376, pp. 300-315 (1998).

31. A. Martini, U. Wolter, A Single Perspective on Arrows between Institutions
. Seventh International Conference on Algebraic Methodology and Software
Technology - AMAST'98. Springer LNCS 1548, pp. 486-501 (1999).

32. B. Matthews, B. Ritchie, and J. Bicarregui, `Synthesising structure from at
speci�cations', Proc. of the 2nd International B Conference, Montpellier, France,
April 22-24, 1998.

33. Jose Meseguer. General logics. In H.D. Ebbinghaus, editor, Logic Colloquium'87,
pages 275{329, 1989.

34. S. Owre et al. PVS: Combining Speci�cation, Proof Checking, and Model Check-
ing, Computer-Aided Veri�cation, CAV '96, Rajeev et al (Eds) Springer-Verlag
LNCS 1102, 1996.

35. R.F. Paige A Meta-Method for formal method integration. In Proc. FME'97, eds
Fitzgerald, Jones, and Lucas, Springer-Verlag LNCS 1313, 1997.

36. Proceedings of the 2nd Methods Integration Workshop, Leeds, EWIC series,
Springer-Verlag, 1996.

37. Y.V. Srinivas and R. Jullig. SpecwareTM : Formal suport for composing software.
In Mathematics of Program Construction, July 1995. (KES.U.94.5).

38. Y.V. Srinivas and R. Jullig. Diagrams for Software Synthesis. Kestrel Institute,
Paolo Alto, California, 1993. Also appear in Proceedings of the KBSE'93.

39. Y.V. Srinivas. Re�nement of Parameterized Algebraic Speci�cations. IFIP TC2
Working Conference on AlgorithmicLanguages and Calculi. Chapman & Hall 1997.

40. A. Tarlecki. Towards heterogeneous speci�cations. In Frontiers of Combining Sys-
tems FroCoS'98, Applied Logic Series. Kluwer Academic Publishers, October 1998.

41. A. Tarlecki, J. Goguen, and R. Burstall. Tools for semantics of computation:
indexed categories. Theoretical Computer Science, 91:239{264, 1991.

42. The VDM examples repository: http://www.ifad.dk/examples/examples.html.
See also FME Industrial Applications Database at http://www.fme-nl.org.

