Supporting Co-Use of VDM and B by Translation

Juan Bicarregui!, Matthew Bishop?, Theodosis Dimitrakos', Kevin Lano?, Tom Maibaum?,
Brian Matthews!, and Brian Ritchie!

! Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX
{J.C.Bicarregui, T.Dimitrakos, B.M.Matthews, B.Ritchie}@rl.ac.uk
2 Computer Science Dept., King’s College London, Strand, London WC2R 2LS
{bishopm, kcl}@dcs.kcl.ac.uk, tom@maibaum.org

Abstract. VDM and B are two mature formal methods currently in use by industry and
supported by commercial tools. Though the methods are foundationally similar, the coverage
of their supporting tools differs significantly. The integration and co-use of the two methods
has been considered in a number of previous papers, and it has been demonstrated that
both methods can be profitably applied at different points in the development life-cycle,
with initial abstract specifications in VDM being translated into design specifications in B
prior to refinement into code. In this paper we describe a partial translation from VDM
to B, which may allow automated support for this step in the process. We also describe
possible future extensions to the translation.

1 Introduction

VDM [Jon90] and B [Abr96] are model-oriented formal methods for the development of sequential
systems; both are currently supported by mature commercial toolkits. Both are based on first-
order predicate calculus and set theory, although their underlying logics are different, and both
have proof rules for formal verification and validation. Both are equipped with a formal semantics.

Despite these similarities, the supporting tools for VDM [Gro99b] and B [B-C00] differ considerably
in their capabilities for analysis, proof, animation and code generation. Because users from both
communities could benefit if these complementary functionalities could be made to cooperate, there
has already been considerable research on the feasibility of integrating the two methodologies.
Their notations were compared in the B User Trials [BR93,BM95]; integration of the two was
investigated in the MaFMeth project [BDW95,BDW96,BDMW97], in which a manual translation
from VDM to B was used in order to apply formal methods to the whole life-cycle of a commercial
product. It was discovered that a large number of errors were introduced by the informal manual
translation between the two languages, and so in the Spectrum project [BMRA98, MRB98] formal
(partial) translations between VDM and B were introduced, although these were still carried out
by hand. Work on integrating VDM and B is currently continuing [BDL*99] in the VDM+B
project!.

We now briefly describe the similarities and differences between VDM and B, before outlining a
partial translation and the issues which remain to be considered in supporting it.

1.1 VDM

VDM has a rich set of data type constructors, augmented with invariant predicates, and a large
expression and statement language. Functions and state-transforming operations can be defined

! http://www.itd.clrc.ac.uk/Activity/VDMB

either implicitly, using pre- and post-conditions, or explicitly. The strong type system supports
static detection of many well-formedness errors.

There is an ISO standard [LHB+96] for VDM-SL which includes a denotational semantics [LP95]
based on the logic of partial functions [JM94]. There is also a proof theory [Jon90,BFL+94], which
supports the validation of specifications through the discharge of proof obligations. The proof
theory has not been validated with respect to the semantics. Ongoing work on supporting proof
in VDM via the PROSPER toolkit [DCN*00] will provide another axiomatic semantics which is
known to differ from the denotational semantics.

The standard for VDM-SL does not include any support for structuring, although several alter-
native approaches are outlined in an “informative annex” to the standard, and one of these alter-
natives is implemented by the IFAD VDM-SL Toolbox [Gro99a,Gro99b]. Structuring in VDM is
discussed in another paper to be presented at this workshop.

1.2 B

The B Method is based on Abstract Machine Notation (AMN), which uses generalized substitu-
tions to represent state transformations. The language contains a number of powerful structuring
mechanisms based on abstract machines, allowing for modularisation of code by means of data
encapsulation. However, the expression language of B is much less rich than that of VDM.

The underlying semantics of B is grounded in weakest preconditions over untyped set theory and
classical logic. There is a proof theory [Abr96,Lan96], and the available tools allow for proof of
refinement from abstract specification through to imperative code. Again, the proof theory has
not been completely formally verified with respect to the semantics.

1.3 Objectives of the Translation
There are four principal issues to be considered in translating VDM to B:

Automatability The cost of moving from VDM to B should be minimal, and hence the trans-
lation should be as automatic as possible. We do not propose that the translation should be
fully automatic, since experiments have shown that user intervention is necessary in order to
generate a good specification. Nevertheless, it is envisaged that the process be guided by a
machine which could also automatically translate parts of the VDM specification.

Correctness The semantics of the source specification should be preserved in the target spec-
ification. Of course, the semantics and underlying logics of the two languages are different,
although we believe that the differences are sufficiently small to be ignored in the first attempt
at a translation. This will naturally affect the formal correctness of our translation.

Conservativeness This is similar to the previous point: the translation should keep the same
model in the source and target languages. That is, the data models should be similar, and
the operations at similar levels of granularity, in both specifications. The different structuring
conventions of the two languages, and the comparative richness of the expression language of
VDM as compared to B, will both have effects on the conservativeness of our translation.

Utility The results of the translation should be useful! In particular, the target specification
should be comprehensible to a human user, and amenable to manipulation using the standard
tools for B.

1.4 Approach to the Translation

A partial translation from VDM to B was outlined in [BMRA98 MRB98]. The translation which
we present below is still partial, and omits many details. We begin by setting out some overall
guidelines which will motivate the rules of the translation:

— Each record type which is used as a type, or part of a type, of a state component variable in
VDM is represented by an object manager machine.

— Other types, such as those used only in inputs and outputs of operations, are translated by a
property-oriented (i.e. algebraic) specification.

— Constants and function definitions may be translated as separate stateless machines. However,
function definitions may have to be translated into (possibly stateless) operations if they
manipulate types which have been translated into object manager machines. In general, we
translate VDM functions into stateless operations wherever possible.

— Machines may need to be combined to assert invariants involving several objects.

— The state model and operations in VDM are translated into a top-level state machine in B.

As in [MRB98], we introduce three possible translations for record types: a property-oriented ap-
proach, a simple object machine and an object manager. The property-oriented approach, which
amounts to an algebraic specification of the type, is used by all record types which are not part
of the state model. It has the disadvantage of producing a machine with a very large and un-
wieldy properties clause containing complex expressions in set theory and first-order logic. The
support tools for B find such expressions hard to deal with, and the resulting specification is rather
unnatural for B.

The object-machine and object-manager approaches, which apply only to record types (and ag-
gregates of record types) which are part of the state model, allow a more natural structured
specification to be developed. However, types defined in this way cannot be used in (for example)
arguments to functions. Choosing the appropriate translation for a record type which occurs in
the state model will require a preprocessing step, which we discuss later.

2 Definition of the Translation

The translation functions are written in the form
TranslationFunction VDM_Term]—AMN_Term

This is not sufficiently general to capture all of the process, since certain rules have non-local
actions, which are currently given informally. A more general formulation would have the form

TranslationFunction| VDM_Term]|AMN_Env— AMN_Termx AMN_Env

where AMN_FEnv is the environment — the current collection of AMN machines, including refine-
ments and implementations. This more general formulation has not yet been fully developed.

There are a number of these basic translation functions, which translate types, type definitions,
state definitions, expressions, functions, operations, etc. Not all of these functions have yet been
formally defined. In particular, the Expression function (which translates VDM expressions into
AMN) is not defined in this paper, although it is invoked by both TypeDef and StateDef.

For the sake of clarity, we have allowed the use of subscripts and single-letter identifiers in the
AMN translations, although these are not strictly permissible in B.

2.1 Type Definitions

Basic Types

The VDM basic types are

basic type = ‘nat’ | ‘natl’ | ‘int’ | ‘rat’ | ‘real’ | ‘char’ | ‘bool’ | ‘token’

These are translated to the nearest available B types where possible. The function Type defines
the translation:

Type[nat] = N
Type[natl | = Ny
Type[char | - STRING

There are of course semantic differences between these types in VDM and B — in particular, sets
take the role of types in B, and all sets in B are finite. These differences are not yet accounted for
in the translation.

The VDM types bool and int require the declaration of library machines which must be included
into the specification, and which cannot be captured in the notation at present:

Type[bool] - INCLUDE Bool_TYPE
Type[int | - INCLUDE Int_TYPE

The types rat and real should be handled similarly, once appropriate library machines are defined.

Type Definitions: Synonyms

Synonyms such as Téme = N are translated as constants, using an auxiliary function typeMachi-
nesFrom Type(typ), which finds other defined types contained in typ and returns the names of the
machines they are named in.

TypeDef[name = typ

mup ==-e
] =
MACHINE name*_type’
SEES typeMachinesFrom Type(typ)
CONSTANTS

name
PROPERTIES

name = Type[typ |

A

Invariant[p == e]
END

For example, Time = N would be translated into:

MACHINE Time _type
CONSTANTS Time
PROPERTIES Time = N
END

Type Definitions: Enumerations

Enumerated types in VDM are of the following form:
type definition = identifier , ‘=’ , name , { | name }

where each name is a new token. They are translated into set constants, with the tokens as elements
of the set. In VDM, enumerated constants are also types, and so are also translated as sets. If

the VDM specification does not make use of the enumerated constants as types, then the above
translation is sufficient; otherwise, the enumerated type is translated into B is as follows:

TypeDef[name = tok; | ...| tok,
| —
MACHINE name‘_type’
SETS

tok,“set’ = { tok; },

tok, set’ = { tok, },
name‘_set’
PROPERTIES
name‘'_set’ = toki"_set’ U...U tok,‘_set’ A
tOk’l # tOk’Q A

tok, 1 # tok, A
END

For example, the enumerated type Switch = ON | OFF is translated to:

MACHINE Switch_type

SETS
On_set = { On }, Off-set = { Off },
Switch_set

PROPERTIES
Switch_set = On_set U Off set A
On # Off

END

Type Definitions: Record Types

The VDM concrete syntax for record types is as follows:

type definition = identifier , ¢::’ , field list , [invariant]
field list = { field }
field = [identifier , ‘:’] , type

This may be translated into a property-oriented (algebraic) specification by defining both the type
identifier name and the fields [4,...,l, as constants in B. For each field [; we add a projection
function from the base type; this simulates the field selection feature of VDM in B. The properties
clauses describe the algebraic theory of these projections and their interaction with the ‘mk_’'name
constant. We introduce a new set name‘0’, and use the constant ‘inv_'name is to define name as
the subset of name‘0’ over which the invariant holds. It would be more natural to define both
name ‘0’ and name as sets, but one set cannot be defined in terms of another in B.

The translation function is as follows:

TypeDef[name :: 1y 1 ty, ..., 1l 1ty
inv mk-name(xy,...,x,) ==e€
]—
MACHINE name‘_type’
SEES
ty ‘_type’, ...ty “type’, BOOL_Type
SETS
name‘0’
CONSTANTS
name,
‘mk_’name,
“mu_"name,
li,..., 1,
PROPERTIES
name C name‘0’ A
‘mk_’name: t1,...,t, =>name0’ A
l1 : name‘0’ = t1 N

I, : name‘0’ — t, A
(V(vty,...,vt,).(vty 1 by, ..., vty by =

(11 (‘mk_"name(vty, ..., vt,)) = vty))) A
(V(vty,...,vty). (vt 1 t1,..., 0ty t by =

(o (‘mk_"name(vty, .. .,vt,)) = vt,))) A

(V(nn).(nn : name= (‘mk_"name(ly(nn),...,lh(nn)) = nn))) A
‘inv_"name : name‘0’— BOOL A
V1, xn)(z1 1,y Ty 2 By =

((‘mk-"name(z1,...,x,) = TRUE) < (Expression[e])))) A
(V(nn).(nn : name‘0’= ((‘inv-"name(nn) = TRUE) < (nn : name))))
END

Note that the invariant returns an object-level boolean value, and so expressions containing the
invariant must equate it with TRUE in order to raise it to the logical level. An alternative approach
would be to make the invariant a B definition (i.e. a syntax-level substitution), but such definitions
are not exported with a machine and must be repeated in every machine in which they are used.
However, this would not be an obstacle to mechanical translation, and might result in fewer or
more tractable proof obligations.

Other type definitions, such as recursive types, are not yet handled by the translation.

2.2 The State Model
A VDM state has the concrete syntax:

state definition = ‘state’ , identifier , ‘of’ ,
field list ,
[invariant] ,
[initialisation] ,
‘end’

invariant = ‘inv’ , invariant initial function

initialisation = ‘init’ , invariant initial function

In the translation to B, we translate this into two machines, one of which uses the TypeDef function
defined earlier to generate the type definitions. In the other machine, variables are introduced for
each state component, and the invariant is translated directly from the state invariant, with the
addition of the substitution from formal variables to state variables. The initialisation is given by
assigning the state variables to any value of the state type which satisfies the translation of the
invariant. The operations section is left blank at this stage; operations are translated separately.

The first machine, handling the type definitions, is produced by applying the TypeDef translation
function described above:

TypeDef[name :: 11 : t1,...,0, : ty
inv mk_name(z1,...,2,) ==p]

The second machine is given by the new StateDef translation function:

StateDef| state name of
inv mk_name(z1,...,T,) ==
init n ==
end
] -
MACHINE name
SEES
name ‘_type’, t1" type’, ... t, type’
VARIABLES
vly,...,vl,
INVARIANT
vly tti ALl A
Expression[p][z; := vy, ..., 2, 1= vly]
INITTALISATION
ANY n
WHERE
n : name A Expression[g]
THEN
vly :=1I1(n) || /*" function /i is from machine t; ‘type’ "*/

vl =1, (n)
END
OPERATIONS

END

Record Types in the State Model

For record types which are referred to by the state, we may in some cases avoid the use of the
property-oriented translation which was given above.

We shall describe the alternative translations in these cases by means of examples, rather than
presenting them in full generality. Suppose first that R is a record type of the following form:

R:r: Ry,
7'2:R2

We may translate this into the following simple state machine:

MACHINE R _obj
VARIABLES 1,75
INVARIANT 7, : Ry Ars: Ry ...
END

This may be included into a top-level state machine, using a renaming — for example, if the state
contains r : R, the translated machine should contain INCLUDES r.R_obj. If R; or R» are
themselves record types, they can be defined in terms of machines which are then included by
R_obj.

If the state contains an aggregate type (set, map, sequence, etc.) of records, then it can be handled
using an object manager. For example, the type R-set may be translated into the following manager
machine:

MACHINE R_mgr

SETS R_Ids

VARIABLES rids,r1,72

INVARIANT rids C RIds A ry:rids - Ry A ro:rids — Ry A ...
END

This machine is also included into the top-level state machine, but without renaming — we have
only one R-manager in the system. If the VDM state contains a variable r:R-set, then the top-level
B state machine should be as follows:

MACHINE S

INCLUDES R_mgr

VARIABLES r, ...

INVARIANT r Crids A ...

END
Again, if R; or R, are themselves record types, they may be broken down into smaller machines.
There may be a problem if a manager machine such as R_mgr is referred to by more than one
record type, since the rules of composition in B do not allow a machine to be included in more than
one other machine. This problem can be resolved by splitting R_mgr into two machines: a simple
machine declaring the abstract set R_Ids, and a manager machine. The former is then accessed

using the SEES construct, and the latter is included with renaming as needed. This allows the
same set of object identifiers to be used by different object managers.

Keeping the above machines in mind, we now return to considering the state model. We begin by
preprocessing the record types which occur in the state model, by dividing them into two disjoint
sets Simple and Manager. Record types which are referenced directly are added to Simple, while
those which are part of aggregates (sets, maps, sequences) are added to Manager. We then impose
the conditions that any type in Manager must be removed from Simple, and any record types
which occur in a field of a type in Manager must themselves be added to Manager.

There are then three cases to consider: a Simple record which contains a reference to another
Simple record. a Simple record which refers to a Manager record, and a Manager record which
refers to a Manager record. (The preprocessing rules out the other case, of a Manager record
referring to a Simple record.)

In the first case, suppose name€ Simple where name:: l; : T, ls : R, and suppose further that T is
not a record type, and R is a record type in Simple.

TypeDef[name:: 1 : T, l3: R
] =
MACHINE name‘_obj’
INCLUDES [>.R* 0bj’
VARIABLES [,
INVARIANT [, €T

END
where R_obj is a simple state machine as above.

In the second case, suppose name€Simple where name:: l; : T, ls : R, and further that T is not a
record type, and R is a record type in Manager.

TypeDef[name:: 1 : T, l3: R
] =
MACHINE name‘_obj’
INCLUDES R*‘“mgr’
VARIABLES [,
INVARIANT I; € T Al €rids

END
where R_mgr is a manager machine as above.

In the last case, suppose name€ Manager where name:: l; : T, l5 : R, and further that T is not a
record type, and R is a record type in Manager.

TypeDef[name:: 1y : T, I3 : R
] —=
MACHINE name*_mgr’
INCLUDES R‘“mgr’
SETS name‘_Ids’
VARIABLES name‘ids’, 1y, 1>
INVARIANT
name‘ids’ C name‘_Ids’ N
l1 € name‘ids’ — T A
lo € name‘ids’ — rids N

END
where R_mgr is a manager machine as above. It may also be necessary to give property-oriented

translations as well as state-based translations for some record types — in particular, types which
are used in the input or output of functions.

2.3 Operations
Here we consider explicit operations, which are defined in VDM as follows:

explicit operation definition =
identifier , ¢:’ , operation type ,
identifier , parameters , ‘==’ , statement ,
[‘pre’ , expression] ,
[‘post’ , expression]

The formal translation rules for operations have not yet been completed, and so instead we provide
an example of a translation and comments on the issues involved. The following operation was
taken from a case study:

ControlCycle: Buttons x TrainVelocity = Action
ControlCycle(b,sp) =
let mk_(tt1, tt2) = TrainTransition(train,doors.ds,b),
mk_(dt1, dt2) = DoorTransition(doors,train.ts,b,clock)
in (clock := clock + 1;
train := mk_Train(tt1, sp);
doors := dtl;
return mk_Action(tt2,dt2));

There are a number of issues to consider in translating this to AMN. As this operation returns a
value, the B version requires a name, which must be provided by the translator. The B version
requires a precondition even if the optional precondition of the VDM operation is absent; this is
used to give the types of the arguments, which are implicit in VDM but must be made explicit in
B.

The VDM 1let construct is translated into an ANY substitution in B, and typing information
which was implicit in the VDM specification must be made explicit in the B specification. The
pair patterns in the let clause have been translated to explicit pairs (maplets).

The VDM operation uses sequencing, the closest counterpart of which in B is also sequencing
(of generalised substitutions); however, sequencing is not available in B machines, but only in
implementations. In this case, parallel substitution suffices, but only because there is no potential
inference between the substitutions.

The translated operation is as follows:

action +— ControlCycle(bb, sp) =

PRE
bb : Buttons A sp : TrainVelocity
THEN
ANY tsr, tar, dr, dar
WHERE

tsr : TrainState A tar : TrainAction A
dr : Door A dar : DoorAction A
(tsr — tar) = trainTransition(train, ds(doors), bb) A
(dr — dar) = doorTransition(doors, ts(train), bb, clock)

THEN
clock := clock + 1 ||
train ;= mkTrain(tsr, sp) ||
doors := dr ||
action := mkAction(tar, dar)

END

END ;
Where parallel substitution is not acceptable because there is potential interference between the

substitutions, it may be possible to translate using another ANY substitution to introduce tem-
porary variables. For example, the following fragment of a VDM specification:

10

swp()
ext wr zz : N

wr yy : N
pre true
post xx =y71 A yy =zz

could be implemented as a fragment of a B machine:

OPERATIONS
swp =

ANY aa,bb

WHERE
aa: N A
bb:N A
aa =yy A
bb = zz

THEN
zz :=aa ||
yy = bb

END ;

2.4 Functions

In general, it is the function definitions in VDM which present the greatest difficulties in transla-
tion, since many VDM-SL expression constructs have no direct equivalents in the AMN language?.

Our approach is to translate VDM functions into B operations as much as is practically possible.
This is particularly necessary in the case where a function manipulates a type which has been
translated into an object manager. Some analysis of functions is thus required in order to determine
which part of the state they are applied to, and which machine to enter them into. Function
definitions (and constants) may also be translated into separate stateless machines in some cases.

Certain functions are reasonably straightforward to translate. For example, if a function has the
following signature:

record_funl (rin : Record ,a; : t1,...,ay : t,) rout : Record
pre ...
post rout = mk_Record(Py(rin,a1,...,ay),--.,Pu(rin ay, ..., a,));

where Record is a record type for which an object manager machine Record_obj has been defined,
then we translate this function as an operation which is added to the Record_obj machine, as
follows:

2 For example, let us briefly consider the VDM-SL if-then-else and cases expressions. B has no
expression-level if-then-else construct, although it does have one in the generalised substitutions
syntax. We could translate if A then B else C, assuming that B and C are of boolean type, as (A=>B)
& ((not A) => C). If B and C are not boolean, then we pull the conditional further out before trans-
lating, so that £(x) = if A then 3 else 7 becomes if A then (f(x)=3) else (f(x)=7). The cases
expression could then be translated similarly, although the difference in semantics between VDM and
B means that we must ensure that the cases are disjoint in B, adding yet another complication to the
translation.

11

~

record_funl (ay,...,a,) =
PRE ai €ti1AN...Na, €ty

THEN ry:= Pi(ay,...,0,);

Tm = Py(aq,-..,ay);
END ;

In this operation, r1,...,7,, are the variables of the record machine. The expressions Pi,..., P,
may involve the variables of the machine, and may also themselves be operations (with consequent
changes in syntax), expecially if the variables are themselves record types and thus provided by
an included machine.

3 Extending the Translation

It will be clear from the above that the translation is defined only for a subset of the VDM-SL
language, and that this subset does not contain some of the essential features of the language.
Accordingly, a major priority for further work on this project is to extend the translation to cover
more of VDM-SL. Since manual translation has been shown to be a major source of errors, we
also intend to produce a tool for automatically (with guidance from the user) translating VDM
specifications into B.

VDM and B have the same expressive power in theory, and so any VDM specification should in
theory have an equivalent B specification. However, we do not anticipate that our translation will
ever encompass the whole VDM-SL language. Some VDM-SL constructs are sufficiently difficult to
translate into B that it is doubtful whether a machine translator could produce a useful equivalent
specification, particularly given our requirement that the translated specfication be usable both
for the toolkit and the user. In this situation, we advocate either refinement in VDM (with the B
style in mind) prior to translation, or else manual translation.

We intend to implement the translation tool in Standard ML of New Jersey® For VDM files in the
standard VDM-SL and IFAD ASCII syntax, we have already developed a parser using the ML-Lex
(lexical analyser generator) and ML-Yacc (parser generator) programs which are distributed as
part of the SML/NJ package.

4 Proof Support

The correctness of the translation remains an issue; ideally, this would require verifying the trans-
lation rules in some common model. Given the different semantics and underlying logics of the
languages, it is not at all clear how this would be done.

Another approach to correctness could be to show that proofs about VDM specifications can be
transformed to proofs about the corresponding B specifications. This would at least allow the user
to verify that the target specification preserves those properties that were of particular interest in
the source specification.

To this end, we propose to (partially) embed both VDM and B into the HOL higher-order theorem-
proving system [GTM93]. This would provide a common theorem-proving environment for both
languages. There are several possible approaches to embedding the logic of partial functions into

8 Available from http://cm.bell-1abs.com/cm/cs/what/smlnj/.

12

higher-order logic [JM94,KK97,Bur98]. An embedding of VDM into HOL is already under de-
velopment at IFAD, using the PROSPER toolkit [DCN*00]. Previous work on proof support for
VDM can be found in [JJLMO91].

There are several papers describing embeddings of formal specification languages into automated
theorem-provers for higher-order logic, among them [Cha98] (B into Isabelle/HOL), [ABM97]
(VDM into PVS), [GP9§] (Z into PVS and HOL) and [BFM99,Muii99] (B into Coq/PVS).

If partial embeddings from VDM and B into HOL can be produced, then we hope it will be
possible (with interaction from the user) to translate HOL proofs about VDM specifications into
HOL proofs about the associated B specifications. This would provide some evidence for the
correctness of the translation from VDM into B.

References

[ABM97] S. Agerholm, J. Bicarregui, and S. Maharaj. On the verification of VDM specification and
refinement with PVS. In J. Bicarregui, editor, Proof in VDM: Case Studies, FACIT. Springer-
Verlag, 1997.

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. C.U.P., 1996.

[B-C00] B-Core (UK) Ltd. The B-Toolkit user manual, 2000. Available online from
http://www.b-core.com/.

[BDL*99] J.C. Bicarregui, Th. Dimitrakos, K. Lano, T. Maibaum, B.M. Matthews, and B. Ritchie. The
VDM+B project: Objectives and progress. In John Fitzgerald and Peter Gorm Larsen, editors,
VDM in Practice, pages 2945, September 1999.

[BDMW97] J.C. Bicarregui, J. Dick, B.M. Matthews, and E. Woods. Making the most of formal specifica-
tion through animation, testing and proof. Science of Computer Programming, 29(1-2):55-80,
June 1997.

[BDW95] Juan Bicarregui, Jeremy Dick, and Eoin Woods. Supporting the length of formal development:
From diagrams to VDM to B to C. In H. Habrias, editor, 7th International Conference
on: Putting into practice methods and tools for information system design, Nantes (France),
October 1995. IUT de Nantes. ISBN 2-906082-19-8.

[BDW96] Juan Bicarregui, Jeremy Dick, and Eoin Woods. Quantitative analysis of an application of
formal methods. In Marie-Claude Gaudel and Jim Woodcock, editors, FME’96: Industrial
Benefit and Advances in Formal Methods, pages 60—74. Springer-Verlag, March 1996.

[BFL*94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie. Proof in
VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-19813-X.

[BFM99] Jean-Paul Bodeveix, Mamoun Filali, and César Mufioz. A formalization of the B method in
Coq and PVS. In FM’99 — B Users Group Meeting — Applying B in an industrial context :
Tools, Lessons and Techniques, pages 32-48. Springer-Verlag, 1999.

[BM95] Juan Bicarregui and Brian Matthews. Formal methods in practice: a comparison of two
support systems for proof. In Bartosek et al., editor, SOFSEM’95 Theory and Practice of
Informatics. Springer-Verlag, 1995. LNCS 1012.

[BMRA9S] J.C. Bicarregui, B.M. Matthews, B. Ritchie, and S. Agerholm. Investigating the integration
of two formal methods. Formal Aspects of Computing, 10(6), 1998.

[BRI3] Juan Bicarregui and Brian Ritchie. Invariants, frames and postconditions: a comparison of
the VDM and B notations. In J.C.P. Woodcock and P.G. Larsen, editors, FME’93: Industrial-
Strength Formal Methods, pages 162-182. Formal Methods Europe, Springer-Verlag, April
1993. Lecture Notes in Computer Science 670.

[Bur9s8] L. Burdy. A treatment of partiality: Its application to the B
method. In CADE-15 Workshop on Mechanization of Partial Functions.
http://www.cs.bham.ac.uk/ mmk/cade98-partiality/index.html, Lindau, Germany,
1998.

[Cha98] L. Chartier. Formalisation of B in Isabelle/HOL. In D. Bert, editor, Proceedings of 2nd
International B Conference, volume 1393 of LNCS, pages 66-83. Springer-Verlag, 1998.

[DCN100] Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad Slind, Graham
Robinson, Mike Gordon, and Tom Melham. The PROSPER toolkit. In Tools and Algorithms
for the Construction and Analysis of Systems: 6th International Conference, TACAS 2000,
volume 1785 of LNCS, pages 78-92, Berlin, Germany, March/April 2000. Springer-Verlag.

13

[GPYS]

[Gro99a]
[Gro99b]
[GTMY3]
[JJLMO1]
[TM94]
[Jon90]

[KK97]

[Lan96]

[LHB196]

[LP95]

[MRBYS]

[Mun99]

A .M. Gravell and C.H. Pratten. Embedding a formal notation: Experiences of automating the
embedding of Z in the higher order logic of PVS and HOL. Technical Report DSSE-TR-98-6,
Department of Electronics and Computer Science, University of Southampton, 1998.

The VDM Tool Group. The IFAD VDM-SL language. Technical report, IFAD, 1999. Available
as a PDF file from http://wuw.ifad.dk/.

The VDM Tool Group. The IFAD VDM-SL Toolbox user manual. Technical report, IFAD,
1999. Available as a PDF file from http://www.ifad.dk/.

M.J. Gordon and editors T.F. Melham. Introduction to HOL: A Theorem-Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, 1993.

Cliff Jones, Kevin Jones, Peter Lindsay, and Richard Moore, editors. mural: A Formal Devel-
opment Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.

Cliff B. Jones and Kees Middelburg. A typed logic of partial functions reconstructed classically.
Acta Informatica, 31(5):399-430, 1994.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7.

Manfred Kerber and Michael Kohlhase. Mechanising partiality without re-implementation. In
G. Brewka, C. Habel, and B. Nebel, editors, Proceedings of the 21st Annual German Confer-
ence on Artificial Intelligence (KI’97), volume 1303 of LNAI pages 123-134. Springer-Verlag,
1997.

K. Lano. The B Language and Method: A Guide to Practical Formal Development. Springer-
Verlag, 1996.

P. G. Larsen, B. S. Hansen, H. Brunn, N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,
G. Parkin, et al. Information technology — programming languages, their environments and
system software interfaces — Vienna Development Method — specification language — part
1: Base language, December 1996.

Peter Gorm Larsen and Wiestaw Pawtowski. The formal semantics of ISO VDM-SL. Computer
Standards and Interfaces, 17(5-6):585-602, September 1995.

B. Matthews, B. Ritchie, and J. Bicarregui. Synthesising structure from flat specifications.
In D. Bert, editor, Proceedings of 2nd International B Conference, volume 1393 of LNCS.
Springer-Verlag, 1998.

C. Muiioz. PBS: Support for the B-method in PVS. Technical Report SRI-CSL-99-01, SRI,
1999.

14

