
vdmML: using XML to represent VDM on the Web.
Some initial thoughts.

Brian M. Matthews

Information Technology Department, CLRC Rutherford Appleton Laboratory
Chilton, Didcot, Oxfordshire, OX11 OQX, UK.

bmm@inf.rl.ac.uk

Abstract. In this paper we describe some initial investigations into the use XML
to support the use of VDM. This presents a snapshot of ongoing work-in-progress,
and thoughts to the future development of such work, including transformation
into different formats, proof obligation generation, and integration with other for-
mal and semi-formal methods.

1 Introduction

XML [5] is becoming established as the cornerstone of the new architecture of the
World-Wide Web (WWW). XML allows user communities to define their own data for-
mats, yet remain compatible with the rest of the information on the WWW. This allows
the universal exchange of information across the web, processable via widely available
tools. The software engineering community is one which could benefit from the use
of XML. Teams are frequently widely distributed and use different tools and need to
exchange information with one another in common formats, such as XML can provide.
Further there is a need for software engineering information such as specifications and
designs to be integrated with other types of information, such as requirements, con-
tracts, programs, and test suites. Again XML supports such interoperability. Thus there
is a need for software engineering notations to be formulated in XML.

In this paper we propose an XML format for the VDM-SL, vdmML. Specifically,
we represent the outer abstract syntax as given in [22]. Representing VDM using XML
would give the following benefits.

– It provides a standard structure preserving exchange format between different VDM
tools.

– It provides a mechanism for presenting and manipulating VDM using standard
WWW tools such as web browsers, and other XML enabled tools.

– It provides a means for exchanging semantically meaningful information with other
formats.

– It enables integration with other formats in documents, such as HTML for simple
documents, MathML for mathematics, and SVG for diagrams.

– It enables the integration with other notations allowing the use of heterogeneous
specifications.

– It eases the development of specifications collaboratively via the WWW via a com-
mon exchange format.



– VDM specifications become dynamic resources, enabling the searching for com-
ponents, their reuse and modification, while allowing the definition of an audit trail
capturing their interrelation.

– It provides for independent validation as a standard format which can be sent to an
independent validation service.

We demonstrate some of the benefits of using XML through the transformation into
different formats, and also discuss further possibilities for the use of XML. In sections
2 and 3 we give a brief introduction to XML, and also MathML, a XML based markup
language for representing mathematics which is used in the definition of vdmML. In
section 4 we introduce vdmML and discuss its use to express VDM. In section 5 we
consider the transformation of VDM into various presentation formats for display. Fi-
nally in sections 6 and we discuss some proposals for further work on vdmML and its
integration with other formats.

Some work in defining an XML description for VDM has been carried out by John
Wordsworth [23]. However, our approach differs as we integrate VDM with MathML
and also demonstrate the value of the XML by giving some transformations into other
formats. Other related work is John Wordsworth’s XML description of Z [23], and
Georges Mariano’s XML representation of B, within the context of the Bcaml B Parser [11,
12]. These latter two open the possibility of integration with other formats.

2 XML

The Extensible Markup Language (XML) is a profile of the Standard Generalised
Markup Language (SGML) [19] developed by the World-Wide Web Consortium (W3C).
XML is designed as a lightweight version of SGML for representing documents and
data on the WWW. It is a meta-language in that it allows users to define their own
markup within a generic syntax for markup; by defining new markup in a standard
manner, and also formally defining the structure of the markup, interoperability can be
maintained whilst allowing user flexibility. The XML activity within W3C has now ex-
panded to a large family of related recommendations. We do not give all the details of
the XML family, but note the following relevant points.

XML defines markup by the use of markup tags which define structured elements
in the data. These elements can either contain text, or be nested to represent struc-
tured data. Thus, an XML representation of some elements from the well-known HTML
markup would be:

�body�
�h1� A Heading �/h1�
�p� A paragraph. �/p�

�/body�

This body element contains two child elements, h1 and p, delimitted by begin and end
tags. Additionally, elements can have attributes, attached to the element’s begin tag,
thus:

�h1 align=’center’� A Heading �/h1�



provides an attribute “align” which provides additional information which can be
used by an XML processor. If the element has no child text or elements, it can be
represented as a single tag, as follows:

�img src=’picture.gif’/�

The structure of a particular class of documents to be used in a particular domain can
be defined using a Document Type Definition (DTD). This defines the elements and
their valid nestings used in a particular class of documents, similar to a context-free
grammar, and also the valid attributes of elements and their range of values. The DTD
can then be used to validate the conformance of any XML document to that document
class. We give relevant parts of the formal syntax for DTDs as they are used. DTDs are
inherited from SGML, and are seen as too inflexible, and also incompatible with XML
Namespaces (see below). Consequently, a new mechanism for defining classes of XML
documents is under development, XML Schema [26]. This is a much more powerful
mechanism than DTDs allowing for example, stronger data-typing and inheritance. In
this paper, because of space considerations, and also because XML Schemas have yet
to be completed and are not as yet widely supported, we only consider XML DTDs;
future development of the work would include moving to XML Schemas.

XML Namespaces [6] provide a mechanism for using elements defined in differ-
ent domains within the same XML document by the addition of a namespace prefix
to element and attribute names to prevent clashes. This provides a simple integration
mechanism for different XML data formats.

3 MathML

MathML [15], originally proposed for use with HTML, but now an XML format, de-
fines a general notation for mathematical symbols and expressions using XML. This
is intended for use not only for displaying mathematics within web-browsers, but also
in web-enabled mathematics processing tools, such as symbolic algebra systems, which
can then process the structured data directly . MathML being implemented in tools such
as Amaya [1] and Mathematica [13].

MathML has gives two levels of support for mathematics. The presentation markup
gives a “visually oriented” view on the mathematical notation, concentrating on the
physical layout of the mathematical expression on the page, similar to a LaTeX math-
mode expression. For example,

x
�
� �x� � � �

is represented as:

�mrow�
�mrow�
�msup� �mi�x�/mi� �mn�2�/mn� �/msup�
�mo�+�/mo�
�mrow�
�mn�2�/mn�



�mo� �mchar name=’InvisibleTimes’/� �/mo�
�mi�x�/mi�

�/mrow�
�mo�+�/mo�
�mn�1�/mn�

�/mrow�
�mo�=�/mo�
�mn�0�/mn�

�/mrow�

Here, the �mrow� element defines a horizontal linear flow on the page, with �mi�
delimitting identifiers, �mo� operators, and �mn� numbers. Further elements define
vertical alignment for fractions, and more complex objects, such as integrals and matri-
ces. While giving precise instructions to a rendering engine, this is inherently ambigu-
ous with respect to the meaning of the expression. For example, the �msup� element
above is used to typographically represent a superscript and there is no notion that a
power operator is intended. This markup is thus is not in general suitable for passing to
a mathematics processor, such as symbolic algebra engine or theorem prover.

MathML also provides a content markup, which represents the expression in a tree
form with an intended semantics. Thus the above expression becomes:

�apply�
�eq/�
�apply�
�plus/�
�apply�
�power/�
�ci�x�/ci�
�cn�2�/cn�

�/apply�
�apply�
�times/�
�cn�2�/cn�
�ci�x�ci�

�/apply�
�cn�1�/cn�

�/apply�
�cn�0�/cn�

�/apply�

Here the �apply� element is used repeatedly for the applications of operators in the
expression, using the convention that the first child of apply is the operator, and the sub-
sequent the arguments. A set of empty elements is supplied for standard operators, such
as�eq/�,�plus/�,�power/� and�times/� above. These built-in operators
and constructs approximately cover high-school or first year undergraduate mathemat-
ics, with a standard interpretation, and also can be modified and extended by the user to
provide alternative semantics.



MathML provides some additional grammatical rules beyond those supplied as
default in XML to ensure the well-formedness of such expression trees. The content
markup however, relies on the processing engine to provide a default presentation; the
user can provide both content and presentation markup of the same expression to be
used in the different context.

We propose to use MathML to provide a base framework for expressing VDM; there
is little point in reinventing the syntax for common operations and expressions, and they
can then be simply extracted from vdmML documents to be passed to a MathML pro-
cessor. However, MathML lacks the those constructs in VDM which are used for spec-
ification of a software system, including datatypes, state, operations and programming
constructs. The approach taken here is to provide new markup in a format dedicated to
VDM, vdmML, and embed within this language those MathML constructs suitable for
expressions.

4 vdmML

In order to represent VDM in XML we define a DTD. As this is a context-free grammar,
this is similar to the outer abstract syntax as given [22]. Here we discuss some of the
features of the DTD without giving all the details.

4.1 Including vdmML in Documents

In order to include fragments of VDM within other documents, with sections of inter-
vening text, or other XML markup-up data, the vdmML provides the�VDM� element,
given in the DTD via an element declaration, as follows.

�!ELEMENT VDM ANY �

This declaration defines a new element, called VDM, together with a content model
which defines the valid element structures which can occur within the element. In this
case, VDM has the ANY content model means that any valid markup from the vdmML
DTD can be placed within this element. This is useful when breaking up VDM notation
throughout an XML document for presentation purposes, or within a paper, but to pass
a coherent specification in vdmML we use a different mechanism.

In the latter case, the top level element for a VDM specification in vdmML is
�Specification�, defined in the DTD via an element definition as follows:

�!ELEMENT Specification (DefBlock*) �

The content model here defines that a Specification element can contain zero
or more DefBlock elements, as signified by the “*” after the element name. Thus
similarly to the grammar of VDM, a specification contains a series of definition blocks 1.

Typically, this element will be used as the root element in a document as follows:

1 In this paper, we ignore modules in VDM.



�?xml version=’1.0’ ?�
�!DOCTYPE Specification SYSTEM

"http://www.itd.clrc.ac.uk/Projects/VDMB/VDMML/vdmml.dtd" �

�Specification�
...

�/Specification�

The first line declares that an XML 1.0 document is being used. The document type dec-
laration (�!DOCTYPE ... � defines the DTD being used, here at a URL, against
which the vdmML can be validated. However, frequently, we would expect the VDM
specification to be embedded within another markup, such as text, or alternatively it
might be supplied without a document type declaration. Then it would be appropriate
to define a VDM namespace in the Specification element. This would then dis-
ambiguate the VDM markup from the other markup in the document. This might be as
follows.

�vdm:Specification
xmlns:vdm="http://www.itd.clrc.ac.uk/Projects/VDMB/VDMML"
xmlns:mml="http://www.w3.org/TR/2000/WD-MathML2-20000328"

�

...
�/vdm:Specification�

Here, two namespace prefixes are defined; “vdm” is defined as a prefix for elements
from the vdmML domain, and “mml” for those elements within the MathML domain,
which are embedded within vdmML. These namespace prefixes are arbitrary and can
change from document to document. The URL provided with each namespace prefix
provides a source for the names in the domain; this will be used by the XML Schema
mechanism for validation purposes. The one supplied with MathML is the standard one
supplied by the W3C; the one for vdmML refers to the CLRC website 2.

In the rest of this paper, we present both vdmML and MathML markup elements
and attributes with these namespace prefixes. This is to clarify which namespace each
element is derived from. Such namespace prefixes are omitted in DTD fragments.

4.2 Expressing VDM in XML

Continuing through the DTD, the definition of Specification is as follows.

�!ELEMENT Specification (DefBlock*) �

�!ELEMENT DefBlock (TypeDef*
j State
j ValueDef*
j FunDef*
j OpnDef*)

�

2 Currently this URL is arbitrary and may change, but provides a convenient unique identifier
for the namespace.



Thus a Specification element contains a sequence of DefBlock elements,
and a DefBlock in turn can be either a sequence of TypeDef elements, a state ele-
ment State, a sequence of ValueDef elements, a sequence of FunDef elements or
a sequence of OpnDef elements; this is similar to the grammar of specifications in the
ISO standard. Note that this definition of DefBlock cannot specify that only one State
element can occur in a specification; this constraint should be expressible using XML
Schema.

The rest of the DTD follows the VDM context free grammar quite closely, and we
omit it for brevity. Instead we illustrate our approach through an example of a fragment
of VDM.

An example operation from [2] is as follows.

operations

delete instance (ir:instance ref)
ext rd schema:schema def

wr model : data def
pre ir in set dom data def
post mk db(schema, model) = delete instance(mk db(schema ,model ),ir)

When expressed in vdmML this becomes the following.

�vdm:DefBlock�
�vdm:Operation id="delete instance" type="implicit"�
�mml:ci�delete instance�/mml:ci�
�vdm:Parameters�
�vdm:Pattern��mml:ci�ir�/mml:ci�
�/vdm:Pattern�
�vdm:Type�
�vdm:TypeName��mml:ci�instance ref�/mml:ci��/vdm:TypeName�

�/vdm:Type�
�/vdm:Parameters�

�vdm:Externals mode=’rd’�
�mml:ci�schema�/mml:ci�
�vdm:Type�
�vdm:TypeName��mml:ci�schema def�/mml:ci��/vdm:TypeName�

�/vdm:Type�
�/vdm:Externals�
�vdm:Externals mode=’wr’�
�mml:ci�model�/mml:ci�
�vdm:Type�

�vdm:TypeName��mml:ci�data def�/mml:ci��/vdm:TypeName�
�/vdm:Type�

�/vdm:Externals�



�vdm:PreCondition�
�vdm:Expression�
�mml:apply�
�mml:in/�
�mml:ci�ir�/mml:ci�
�mml:apply�
�mml:csymbol mml:definitionURL="http://www.itd.clrc.ac.uk/Project

dom
�mml:csymbol�
�mml:ci�data def�/mml:ci�

�/mml:apply�
�/mml:apply�

�/vdm:Expression�
�/vdm:PreCondition�

�vdm:PostCondition�
�vdm:Expression�
�mml:apply�
�mml:eq/�
�mml:apply�
�mml:ci�mk db�/mml:ci�
�mml:ci�schema�/mml:ci�
�mml:ci�model�/mml:ci�

�/mml:apply�
�mml:apply�
�mml:ci�delete instance�/mml:ci�
�mml:apply�
�mml:ci�mk db�/mml:ci�
�mml:ci vdm:type=’old’�schema�/mml:ci�
�mml:ci vdm:type=’old’�model�/mml:ci�

�/mml:apply�
�mml:ci�ir�/mml:ci�

�/mml:apply�
�/mml:apply�

�/vdm:Expression�
�/vdm:PostCondition�

�/vdm:Operation�
�/vdm:DefBlock�

Within this fragment, we find the operation with its parameters, external variable frame
declarations, and its pre- and post-condition, represented as vdmML elements, and the
. The vdmML version is much more verbose as we are explicitly representing the struc-
tural elements of the syntax. We note that:



– The operation has been given a id attribute for locating this operation within the
document; this can be used for cross-referencing using the ID and IDREF mecha-
nism built into XML.

– The fact that the operation is implicit is recorded as an attribute.
– The operation name is given using the �ci� element from MathML, defined for

identifiers in content mode.
– The read/write mode for the external frame is given as an attribute. This allows the

DTD to restrict it to the given two values.
– Expressions are given using MathML apply elements, as discussed below.

A prototype conversion tool has been developed which takes the VDM ASCII syn-
tax as defined by the IFAD VDM-SL Toolkit and generates the equivalent vdmML.

4.3 Relationship to MathML

MathML provides vdmML with a base level syntax for identifiers, symbols and expres-
sions.

Identifiers are written as�mml:ci�id�/mml:ci�, taken directly from from MathML.
In the above example we have added the vdmML attribute vdm:type=’old’ to some
variables representing the pre-state variable in a postcondition, thus signifying that
these are semantically related. Such mixing of attributes is accommodated by the XML
Namespace mechanism although it does not conform to the MathML DTD; again, XML
Schemas should allow for this.

Integers, such as 12, are interpreted as

�mml:cn mml:type=’’integer’’�12�/mml:cn�

directly from MathML. Similarly, reals such as 12 are interpreted as

�mml:cn�12�/mml:cn�

Real is the default type of number in MathML. MathML also provides boolean con-
stants:

�mml:cn mml:type="constant"�true�/mml:cn�
and
�mml:cn mml:type="constant"�false�/mml:cn�.

For VDM’s nil constant for lists etc, we use MathML’s csymbol element to define
new symbols:

�mml:csymbol
mml:definitionURL="http://www.itd.clrc.ac.uk/Projects/VDMB/VDMML"�
nil

�/mml:csymbol�

The definitionURL attribute here refers the user to a reference location where the
definitive definition of the symbol can be found in either a machine or human readable



form. Here for convenience, we have chosen to use the VDM+B Project web site as the
URL for such information3.

For unary and binary operators we use the predefined MathML operators such as
�mml:eq/�, and �mml:in/� in the above example. Built in operators not pre-
defined in MathML are again defined using the �mml:csymbol� element with an
appropriate definitionURL, such as the ‘‘dom’’ unary operator in the above exam-
ple4.

These operators are used in conjunction with the apply operator�mml:apply� to
make expressions in vdmML. More complicated expressions, such as conditionals, or
local variables can result in MathML elements containing vdmML elements, reflecting
the nesting of expressions. Again, the XML Namespace mechanism can accommodate
such mixing of domains.

5 Applying transformations to vdmML

By representing VDM using vdmML, VDM specifications can be passed around the
web and processed using standard XML enabled tools such as web browsers, either as
a standalone document or embedded in other XML formatted data, such as document
formatting. Microsoft Internet Explorer 5 (MSIE5) currently supports XML and other
browsers have development versions supporting XML (such as Netscape 6). However,
in order to be presented in a human readable format, a stylesheet needs to be applied
to it which augments or transforms the XML document into a form presentable by the
browser. By supplying different stylesheets to the same XML document, different views
can be given, while maintaining their consistency with respect to the underlying data.

The W3C is defining a stylesheet language, XSL, to transform and format XML
documents for presentation and to convert XML formats into other possibly non-XML
formats. The first part of this is a transformation language XSLT [7] which provides
a standard means to provide transformation rules to apply to XML documents, either
into another XML format or into a different format altogether. XSLT is itself an XML
format.

In order to demonstrate the usefulness of vdmML, three transformations of vdmML
are initially proposed using XSLT scripts to provide different presentations for different
circumstances.

– vdmML to ASCII This transformation takes a vdmML marked up text and con-
verts to the raw ASCII input format, as used by the IFAD VDM Tools.

3 This URL should refer to a reference site on the Web which provides the definitive definition
of the symbols, which this site currently does not provide.

4 Strictly speaking, all the numeric values and all operators from MathML used vdmML should
be interpreted in a standard model for mathematics. As the semantics for VDM are different,
especially with respect to undefinedness and LPF, all MathML operators should have a quali-
fying semantics element redefining them in the semantics of VDM. However, given that they
are represented here in the context of vdmML, we feel that it clear what the intended semantics
is, and qualifying semantics is superfluous.



– vdmML to HTML This transformation takes a vdmML marked up document and
converts it into a HTML format suitable for display on a standard Web browser,
which is not necessarily an XML enabled.

– vdmML to LaTeX This transformation provides suitable LaTeX markup for print
quality documents.

All three transformation scripts can be processed using a standard XSL processor, such
as XT [8], either on the server or on the client-side. Alternatively, MSIE5 provides
a built-in XSL processor; an XML document can be accessed across the web, together
with a reference to the XSL stylesheet and MSIE5 will apply the stlyesheet to the XML,
displaying it in using its normal HTML display rules if the output is HTML. Thus this
is a suitable demonstration of the vdmML to HTML processing script.

XSLT provides a set of rules for transforming the XML document which are applied
by walking over the XML document tree. A fragment of the vdmML to HTML script is
given below. This gives the rule which is applied to (implicit) Operation elements. All
XSL elements are given with a xsl namespace prefix.

�xsl:template match="vdm:Operation[@type=’implicit’]"�
�p�
�a�
�xsl:attribute name="src"�#�xsl:value-of select="@id"/��/xsl:attribute
�xsl:value-of select="mml:ci"/�

�/a�
�xsl:apply-templates select="vdm:Parameters"/�
�xsl:apply-templates select="vdm:Result"/�
�br/�
�xsl:if test="vdm:Externals"�
�strong�ext�/strong��br/� �xsl:apply-templates select="vdm:Externals"

�/xsl:if�
�xsl:apply-templates select="vdm:PreCondition"/�
�xsl:apply-templates select="vdm:PostCondition"/�
�xsl:apply-templates select="vdm:Exceptions"/�

�/p�
�/xsl:template�

An XSLT stylesheet consists of a series of templates which match the XML doc-
ument at specified points and apply the rule to the content of that point. Thus here
the template matches the vdm:Operation element, with the condition that its type
attribute is set to implicit. On matching, this template will generate a HTML p
element, an a element etc. The embedded�xsl:apply-templates ... � ele-
ments will apply the templates in the stylesheet to the sub-elements of vdm:Operation
specified, for example,vdm:Parameters,vdm:PreCondition andvdm:PostCondition.
Note that conditionals can be also added using�xsl:if ... �.

The result of applying this stylesheet to the above example operation is displayed
in the screenshot from MSIE5 below.



In this transformation, internal link anchors are placed on definitions of identifiers, and
internal links are placed on the usage of identifiers. Thus, this transformation automati-
cally produces a version of the document with hyperlinked cross-references.

6 Further Proposals

Representing VDM in XML opens up further possibilities. In this section we discuss
some of these as suggestions for future directions of development of vdmML, and fur-
ther XML support for formal methods.

6.1 Client-side processing

Having delivered VDM to the browser, it can be manipulated using transformations
on the structure, using XSLT as discussed above, and also by the using the Document
Object Model [9], an API onto the XML structure provided in standard browsers. This
offers the possibility of developing lightweight client-side processing and analysis tools.

For example, XSLT could be used to generate proof obligations on the fly, and
present them to the user. Further, given a vdmML enabled front-end to a theorem prover,
such proof obligations could then be passed on to the theorem prover for analysis. Re-
sults from the theorem prover, in the form of proof trees, could also be passed back



to the user in XML format for display. Thus vdmML could support a web-based dis-
tributed VDM support environment.

6.2 Integration with other Web formats

By using vdmML, VDM documents can be seemlessly integrated with other existing
XML based formats on the web. Above we have discussed using MathML and HTML
(or the XML based variant of HTML, XHTML [24]) for mathematics and documents.
Other existing formats include:

– Scaleable Vector Graphics (SVG [20]) for representing diagrams using XML, which
could provide a graphical description of VDM, via an XSLT transformation.

– Digital Signatures (DSig [10]) for authentication of VDM specifications, turning
them into legal contracts.

– Resource Description Format (RDF [17]) for providing contextual information (“meta-
data”) about VDM documents as web resources. This could be used for example for
cataloguing and searching VDM repositories, for version control, and for providing
supporting material.

By using these technologies, VDM specifications can become flexible and powerful
web-based resources within a distributed software development support environment.

6.3 Exchange with other methods

vdmML also opens the possibility of exchange with other formats. As mentioned above,
there has already been preliminary work on representing both Z and B using XML.
XML provides a means for representing a mixed document with specifications in each
which can be extracted simply to be processed in the support system of each tool. Fur-
ther, XSLT could be used to implement transformations between VDM and other lan-
guages, such as the transformations proposed to integrate VDM and B [3, 14, 4], within
the web client. Thus XML could support heterogeneous development, with each formal
method being used where it is most appropriate and the consistency of the development
ensured by transformation.

Further, vdmML could support the integration of formal and informal methods.
For example, there are already proposed XML interchange formats for UML [18, 25].
As with formal methods above, XML could support integrated document with both
VDM and UML, but distinguishable. Again, transformation could support the formal
translation of UML notions into VDM and vice-versa. SVG can be used to present UML
graphically in the browser.

7 Towards a Formal Methods Markup Language

A more ambitious longer term aim might be to develop a single XML based markup
language for representing all formal methods data which might be called Formal Meth-
ods Markup Language (FMML). This could be seen as similar to the MathML effort
which tries to provide sufficient expressive power to represent the all of mathematics,



but also allows individual domains to modify or extend the notions to the specialised
semantics of that domain. Thus FMML might provide generic elements for, for exam-
ple, specifications, modules, refinements, proof rules and theories, and proofs, but for
each particular variant formal method, (or class of formal methods such as model based
methods like VDM, B and Z), specialised notions would be introduced, such as the state
or operation with its post-condition.

The benefits of a single FMML, above and beyond the benefits mentioned in the
introduction, might include the following.

– It enables the exchange of formal methods data between different formal methods.
– It enables the exchange of formal methods data between different formal methods

tools.
– It provides support for heterogeneous specifications and developments within a sin-

gle framework.
– It provides a single interchange format between different theorem proving systems.
– It provides a single generic formatting mechanism into other document formats

(TeX, RTF etc) for printing.

However to use FMML to integrate languages we need to tackle larger problems.
Different languages have different constructs and means of representing those con-
structs. Different languages have very different semantics. If FMML would seek to
integrate for example, model-based languages, process-algebras and algebraic specifi-
cation languages, then a wide variety of different structures and semantics would need
to be accommodated. How these differences are handled would be the major challenge
of this work. It is not proposed to produce a single universal specification language:
such efforts have been undertaken before and are beyond the scope of FMML. What
FMML would provide is a universal syntax for exchange and integration.

XML Schema with its flexible and modular structure and its inheritance mecha-
nism might well provide a suitable vehicle for describing such a single language. The
effort also might take inspiration from the Text Encoding Initiative (TEI) [21], a long
running project to electronically encode literary texts using SGML. What it interest-
ing for FMML is its ”pizza model” style of giving DTDs. TEI provides a base DTD
providing basic structures common to all TEI documents. However, particular classes
of texts (plays, poetry etc) provide a ”topping” DTD to provide structures particular to
that class. This model could be used to provide base structures (specification, module,
expression, statement, rule, proof for instance), and specific DTD extensions given for
given formal methods.

8 Conclusion

The work presented in this paper is a prelimary snapshot of work in progress together
with some thoughts for future work. Nevertheles, it demonstrates the utility of present-
ing VDM in XML, and forms the springboard for further work in this area, to bring
some of these promising ideas into reality.



Acknowledgements

The author would like to thank his colleagues on the UK EPSRC funded project “VDM+B”
for their support. Also, John Wordsworh and Georges Mariano for their help in prepar-
ing this paper, and John Fitzgerald for his helpful comments.

References

1. Amaya Editor/Browser, http://www.w3.org/Amaya, 2000.
2. J.C. Bicarregui and B.M. Matthews, The Specification and Proof of an EXPRESS to SQL

“Compiler” in Proof in VDM: Case Studies, ed. J.C. Bicarregui, Springer, 1998.
3. J.C. Bicarregui, B.M. Matthews, B. Ritchie and S. Agerholm Investigating the integration

of two formal methods Formal Aspects of Computing 10(6), 1998.
4. J.C.Bicarregui et.al. Supporting co-use of VDM and B by translation submitted to the 2nd

VDM workshop, York, Sept 2000.
5. T. Bray, J Paoli, C.M. Sperberg-Mcqueen, Extensible Markup Laguage (XML) 1.0, W3C

Recommendation, http://www.w3.org/TR/1998/REC-xml-19980210, February 1998.
6. T. Bray, D. Hollander, A. Layman Namespaces in XML World Wide Web Consor-

tium Recommendation REC-xml-names-19990114, http://www.w3.org/TR/1999/REC-
xml-names-19990114, January 1999

7. James Clark, XSL Transformations (XSLT), Version 1.0 W3C Recommendation,
http://www.w3.org/TR/1999/REC-xslt-19991116, 16 November 1999.

8. James Clark, XT, http://www.jclark.com/xml/xt.html
9. Document Object Model (DOM) Level 1 Specification Version 1.0 W3C Recommen-

dation REC-DOM-Level-1-19981001, http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001, 1998

10. XML-Signature Syntax and Processing W3C Working Draft
http://www.w3.org/TR/2000/WD-xmldsig-core-20000711/, 2000.

11. Georges Mariano, Bcaml : B parser module,
http://www3.inrets.fr/Public/ESTAS/Mariano.Georges/annonce/index.html, July 2000.

12. Georges Mariano, private communication, July 2000.
13. Mathematica, http://www.wolfram.com, 2000.
14. B.M. Matthews, B. Ritchie and J.C. Bicarregui, Synthesising structure from flat specifi-

cations, in D. Bert (ed), Proceedings of the 2nd International B Conference LNCS 1393,
Springer-Verlag, 1998.

15. N. Poppelier, R. Miner, P. Ion, D. Carlisle, Mathematical Markup Language (MathML)
version 2.0, W3C Working Draft, http://www.w3.org/TR/2000/WD-MathML2-2000-328,
March 2000.

16. The Prosper Project, http://www.dcs.gla.ac.uk/prosper/, 2000. L. A. Dennis, G. Collins,
M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gordon, and T. Melham, The PROS-
PER Toolkit. Proceedings of TACAS 2000 LNCS 1785, 2000.

17. Resource Description Framework (RDF) homepage, http://www.w3.org/RDF/
18. J. Suzuki, Y. Yamamoto, Making UML Models interoperable with UXF Papers from

UML’98, LNCS 1618, 1999.
19. Information processing – Text and Office Systems – Standard Generalized Markup Lan-

guage (SGML). First edition, ISO (International Organization for Standardization). ISO
8879:1986(E), 1986.

20. Scalable Vector Graphics (SVG) 1.0 Specification W3C Candidate Recommendation
http://www.w3.org/TR/2000/CR-SVG-20000802/, 2 August 2000



21. Text Encoding Initiative homepage, http://quirk.oucs.ox.ac.uk/TEI/index.html
22. Vienna Development Method – Specification Language International Standard ISO/IEC

13817-1, 1996.
23. John Wordsworth, private communication, July 2000.
24. XHTML 1.0: The Extensible HyperText Markup Language A Reformulation of HTML 4

in XML 1.0 W3C Recommendation http://www.w3.org/TR/2000/REC-xhtml1-20000126
2000

25. XML Metadata Interchange (XMI), the Object Management Group
ftp://ftp.omg.org/pub/docs/formal/00-06-01.pdf, 2000.

26. W3C XML Schema activity page http://www.w3.org/XML/Schema.html


