
Towards a Compositional Semantics for Modular

VDM Speci�cations� Contextual Structuring

Theo Dimitrakos�� Juan Bicarregui� Brian Matthews� and Brian Ritchie

ISE Group� CLRC Rutherford Appleton Laboratory� OXON� OX�� OQX� U�K�

Abstract� The complexities and the dynamics of evolving software de�
velopment today require more than ever the provision of reusable build�
ing blocks and structuring methods in order to build larger and more
complex speci�cations� This is the �rst in a series of papers towards
a compositional semantics for modular structured VDM speci�cations�
We provide a compositional extension of the denotational semantics for
the �at VDM�SL� emphasising on contextual structuring� In addition�
we discuss some non�interference and compositionality assumptions that
underlie the structuring mechanisms of modular VDM speci�cations and
introduce a new structuring assembly called protected import in order to
control information �ow in contextual structuring�

� Introduction

VDM�s origins lie in the de�nition of programming language semantics in the
����s� but it has for many years been used in systems speci�cation and devel�
opment generally ��	
� Areas to which VDM has recently been applied include
railway interlocking systems ���
� ammunition control systems �
�
� semantics
of data �ow diagrams ���
� message authentication algorithms �
�
� relational
database systems �
�� ��
 and medical information systems� A directory of VDM
usage examples is available at http���www�ifad�dk�examples�examples�html�
However� the ISO standard VDM�SL de�nition �
�
 does not provide a standard
notion of a module syntax or its semantics� �Some interesting approaches to
de�ning modular VDM speci�cations are outlined in the appendices of �
�
��� In
the absence of a standardised notion of a module� the modular construct intro�
duced by IFAD ��

 is now a de facto industrial standard� In this paper we discuss
a compositional �denotational� semantics for modular VDM speci�cations using
a syntax that extends IFAD�s modular construct�

A structured VDM speci�cation is viewed as a ��nite� collection of inter�
related VDM modules� The denotational semantics we discuss in this paper is
compositional in the following sense�

�� models of a structured speci�cation are constructed using the models of the
constituent modules as building blocks� in a way that re�ects the structuring
of the speci�cation�

� Correspondence author� email� t�dimitrakos�rl�ac�uk� tel�� ��� �	
� ���

��
fax� ��� �	
� ���

�� WWW� http���www�itd�clrc�ac�uk�T�Dimitrakos




� the semantics of a structured speci�cation are derived from the semantics
of the constituent modules with respect to certain constraints which are
imposed by the speci�ed interconnections between the constituent modules�

Consequently� the calculation of the semantics of a structured speci�cation de�
composes to the calculation of semantics for the constituent modules with respect
to the constraints that are imposed by the explicitly speci�ed module intercon�
nections�

In general� one one can distinguish the following three basic types of modular
structuring in state�oriented speci�cation�

Contextual structuring which is mainly concerned with building the static
part of a speci�cation �non�state types and auxiliary functions�which pro�
vides the context for de�ning state and operations�

State structuring which focuses on the modular presentation of operations
and state� Using this type of structuring one may capture state sharing�
synchronisation and state dependency � therefore producing speci�cations
that re�ect the architectural structure of the implementation�

Dynamic state structuring which considers modules that represent�abstract�
classes and allows dynamic state generation�

Of course this distinction is made for presentation and methodological purposes�
one should expect a mixture of the above in most �real�life� applications�

This document is the �rst in a series of papers towards a compositional formal
semantics for structured VDM speci�cations� We emphasise on the contextual
structuring� A detailed account of state structuring and dynamic state genera�
tion will be provided in forthcoming papers� In contrast to what is often thought
� contextual structuring does not simply serve presentation purposes� As we
illustrate in this paper� even at this level of structuring there are interesting
interference and compositionality issues to be considered� This is a good reason
for distinguishing contextual structuring as the obvious starting point� �In addi�
tion to the fact that the conceptual models of the static part are simpler and
intuitively clearer��

The semantics discussed in this paper are generic in the sense that they
rely on very weak assumptions placed upon the denotational semantics of the
�at VDM language and will work with a variety of alternative denotational
semantics in addition to the semantics described in the ISO standard for VDM�
SL� We focus on the following features of this semantics�

�� The use dependent functions as a mathematical basis for de�ning denotation
assignment in structured speci�cations� This allows to use environments for
the �at language as basic building blocks for de�ning environments for struc�
tured speci�cations� Hence� facilitating a transparent relationship between
the denotational models of �at and structured speci�cations�


� The use of simple �binding equations� in order to capture the sharing of con�
structs via the export�import interface� This simpli�es the semantic analysis
of structured speci�cations



�� The distinction of protected import from the common �unprotected� import�
If the import of a construct is declared to be protected� then the corre�
sponding semantics ensure that the importing module does not interfere in
the semantics of the imported construct� That is� no emerging properties
from the importing to the host module are allowed� In order to be e�ective�
protected import relies on some architectural assumptions which ensure that
emerging properties cannot �ow through some indirect information channel�

�� The �attening operator which facilitates the correlation of the semantics of
the structured speci�cations with the �at language semantics by providing a
means to synthesise a single module speci�cation from an subsystem �where
the latter is seen as a collection �diagram� of interrelated modules� with a
new export interface�

An outline and informal description of the basic structuring mechanisms
considered in this paper is provided in section 
� The detailed de�nitions of these
structuring mechanisms are provided in sections ��� following a summary of the
elements from the ISO standardised denotational semantics of the �at VDM�SL
which we need to employ �section �� � For presentation purposes� the structured
language semantics is introduced incrementally as is sketched in section �� We
do not provide literal VDM de�nitions of the proposed semantic functions in this
paper� In most cases these follow straightforwardly from our formal de�nitions
and they will be contained in an extended version of the paper� Here� our main
focus is to explain the mathematical underpinnings and the engineering context
of the structuring mechanisms under consideration� In section ��� we relate our
approach with previous attempts and other related work from algebraic� category
theory based and state�oriented speci�cation� We close this paper in section ��
by summarising the possible continuation of this work and emphasising some
outstanding issues which we think that will need to be resolved� either in the
forthcoming or in future versions of the standard� As far as this is possible� we
follow the IFAD VDM�SL Tools syntax for modular structuring� provided in ��

�
Whenever there is a divergence from the IFAD syntax� this will be highlighted�

� An Outline of the Basic Structuring Mechanisms

In this paper we discuss the �denotational� semantics of the following clauses
which are related to contextual structuring�

Export The export interface of a module selects those constructs of the mod�
ule speci�cation which are �public�� ie�� visible to the outside� Export aims
to capture some aspects of information hiding� which is a pragmatic and
somewhat informal concept but also an important concept that has to be
supported by a formal semantic notion� If such a formal notion is not pro�
vided then one should expect� among others� absence of any formal support
for re�nement that allows one to avoid modelling what is hidden�

Import The import interface combines familiar concepts in formal speci�cation
such as hiding and extension in order to bind modules in a whole� it allows



a part of the visible constructs of an �imported� module to be �re�used as a
building block for another �importing� module� As a result� the import inter�
face establishes associations between modules which may allow information
to �ow in either direction� the de�nition of the imported construct� which
is provided by the host module� enriches the speci�cation of the importing
module which may� in turn� impose emerging properties that further con�
strain the semantics of the imported construct� Hence� in the most general
case an import may a�ect the semantics of both the importing and the host
modules�
Di�erent kinds of import may give rise to signi�cantly diverse associations
between modules� More particularly� we distinguish between the protected
and unprotected import of a construct� In the former case� the import con�
serves the semantics of the imported construct as in the host module� no
emerging properties a�ecting the semantics of this construct are allowed� In
the latter case� the only purpose of the import is binding� the importing
module may implicitly restrict the accepted semantic values of the imported
construct�

Parameterised Modules Parameterisation distinguishes a variable part �for�
mal parameter� and a enclosing part �body� in a module in such a way that
attaching the enclosing part to a�ny consistent� instance of the variable part
gives rise to a �consistent� instance of the whole� The properties implicitly
imposed on the formal parameter by the body act as constraints on the possi�
ble substitution instances of the formal parameters �actualising constructs��
Parameter instantiation describes how the enclosing part that is speci�ed
in a parameterised module is attached to an instance of the parameters in
order to produce an instance of the whole� An interesting symmetry between
parameter instantiation and protected import is witnessed in Example �

Flattening The �attening operator provides the means of synthesising a single
module speci�cation from a subsystem speci�cation understood as an aggre�
gate of modules� The �attening operator is introduced in order to support
the correlation of the �at language semantics with the semantics for the
modules�

� Elements of the �at language semantics

The �rst step in a methodological study of the semantics for the modular speci��
cations is to identify those basic operations in the semantics of the �at language
that are necessary for building the semantics of structured speci�cations on top
of the standardised semantics for �at documents� These elements include the
notions of a model for a document� a satisfaction relation �between a model and
a document and between a model and a VDM statement�� language restriction
and a model reduction� We re�examine each in turn�

Flat language models� A �at language speci�cation doc is given semantics
by means of the associated set of models� The semantic function SemSpec�



DOC � ��ENV � such that

SemSpec�doc� � fenv � ENV jIsAModelOf �env� doc�g

assigns to each document doc a set of models selected from a collection
ENV of �candidate� models� which are called environments� ENV contains
all maps from identi�ers to possible denotations for VDM constructs� and
IsAModelOf is a predicate which checks whether a given environment sat�
is�es the speci�cation�

Satisfaction� Satisfaction is captured in the standardised �at language se�
mantics by means of the predicate IsAModelOf �env� doc� which checks
if a given environment env satis�es �in the formal sense� a given speci�
�cation doc� Satisfaction can be further re�ned by introducing a relation
IsAModelOf �env� frm� which checks if a given environment satis�es a for�
mula frm� �Where frm consists of identi�ers in domain�env��

Language restriction� By introducing a language restriction operator over the
�at language� we facilitate the formal de�nition of information hiding� We
assume that the obvious language restriction operator is introduced�

Let ID denote the set of construct identi�ers that are de�ned in a
speci�cation doc and generate a language L� If V ID is the subset of
ID which generate a sublanguage V L of L� denoted by V L � L� then
V L is called the restriction of L to V ID�

Note that V ID should be su�ciently rich to generate a set of well�formed
formulae� The �language generated by the� construct identi�ers ID�doc� can�
not be restricted to any arbitrary subset� Also note that� in the more general
case� the identi�ers that appear in a moduleM include those imported from
other modules�

Renaming� The renaming operation provides the basic means for avoiding
name clashes� It de�nes a bijective correspondence between existing and new
names �identi�ers� of constructs without a�ecting their semantics� Given a
renaming r�ID� � ID
 and a set envset of environments for ID� the se�
mantic function SemRename produces an isomorphic set of environments
for ID
 as follows�

SemRename�r� envset� � fenv
 j env
 � r � env�� env� � envsetg
Model reduction� In this document we use the obvious model reduction op�

eration which is seen as the precomposition of a model with a language
inclusion �possibly after renaming��

Let ID denote the set of construct identi�ers that appear in a spec�
i�cation doc and let inc�V ID � ID be a language restriction� The
reduct of an environment env for ID to an environment env� for
V ID is given by restricting the domain of env from ID to V ID�
hence by precomposing env with the inclusion of inc�V ID � ID�
i�e� env� � env � inc�
Given a set envset of ID�environments and a language inclusion
inc�V ID � ID the semantic function reduce produces the set of
their V ID�reducts�

reduce�V ID� envset� � fenv � inc j env � envsetg



Clearly� model reduction conserves all the public properties� an environment
env for ID satis�es a public �V ID��property exp if and only if env � inc

satis�es exp�
Model expansion� Let inc�V ID � ID as above� and let env�� env
 be en�

vironments for V ID and ID respectively� We call env
 a model expansion
of env� to the language of ID i� env� � R�env
�� Given a set of environ�
ments for V ID we write expand�ID� envset� to denote the set of model
expansions of the environments in envset� That is�

expand�ID� envset� � fenv j env � inc � envsetg

If env is an environment for V ID then the writing expand�ID� fenvg� or
its paraphrase expand�ID� env� will denote the set of model expansions of
env to ID�

� An Overview of the Semantic Functions De�nitions

A module speci�cation can be divided into two parts� the interface �i�e�� the
exports� imports and parameters clauses� and the body� In general� a denotational
model for a structured speci�cation SP amounts to a function that assigns a �at
language model of the �visible part of the� body of M to the identi�er of each
module in the speci�cation � Hence� ifMID is the set of identi�ers of the modules
that constitute SP then

Models�SP � � FUN�MID�ENVmid�

Note that these models are dependent functions� That is� ENVmid depends
on the domain value mid �MID� In particular the mappings in ENVmid assign
values to the �visible� construct identi�ers in V IDmid� i�e� the identi�ers of the
constructs in the �exported� language of the module�

For presentation purposes� we introduce the semantics of a structured speci�
�cation in the following steps�

�� We introduce the semantics of a single module with no imports� no param�
eters and no hiding in section �� That is� a module where exports all is the
only interface�


� We introduce the semantics for information hiding� where selected constructs
are exported� in section 	�

�� We give a de�nition of models for speci�cations with non�parameterised mod�
ules in section �� This is achieved in the following steps�
�a� we discuss the semantics of module binding via �unprotected� import in

subsection ����
�b� we distinguish the protected import and justify the purpose of the �imports

protected� new clause in subsection ��
�
�c� we introduce a method for deriving semantics for the body of a structured

speci�cation where the building blocks are non�parameterised modules
with imports clauses describing the binding of these building blocks and



�d� �nally we extend this method by incorporating the hiding described by
the export interface�

�� We further extend this method in section � in order to compositionally de�
rive semantics of a structured speci�cation in the case where the building
blocks can be parameterised modules with imports and instantiate clauses
describing the binding of the building blocks� This is achieved after intro�
ducing semantic functions for parameter passing in subsection ��� and for
parameter instantiation in subsection ��
�

�� Finally� we describe the semantic function of the �attening operator for struc�
tured sub�speci�cations �subsystems� in subsection ����

� The Semantics of a Simple Module

Let us �rst consider a structured speci�cation SP consisting of a single module
M with no imports and no parameters and no hiding �ie�� where exports all is
the only interface�� A model of SP is a function that assigns a �at languagemodel
of the body ofM to the module identi�er forM � Hence� SemStrucSpec�SP � �

fm�fid�M�g � ENV id�M� j m�id�M�� � SemSpec�body�M��g

where

� id�M� is the module identi�er of M �
� ENVid�M� is the class of environments for the �visible� language ofM � which
in this case is the same as the �at language of body�M�� and

� SemSpec�body�M�� is the set of models for the �at language speci�cation
body�M� as de�ned in the denotational semantics for the �at language �e�g�
the semantics described in �


 and the ISO standard �
�
��

Note that in the above de�nition every construct identi�er is directly associated
with its module identi�er� In this way� name clashes between di�erent modules
are avoided� For simplicity� when the module M is �xed or its identi�er is clear
from the context we may refer to the construct c in M directly through id�c��

Example �� Assume that a structured speci�cation consists of the following sim�
ple module

module MODULE�

exports all�

definitions

functions

f�x�nat� fx�nat

pre TRUE

post fx � ���

h�x�nat� hx�nat

pre TRUE

post �	 � hx� 
 �hx � f�x���

end MODULE�



Note that the implicit de�nition of h a�ects the de�nition ofMODULE��f by forc�
ing all models of MODULE� to be functions with image values natural numbers
between � and �� This is emerging property has not been stated explicitly in the
de�nition of function MODULE��f� An example of an assignment constituting a
model for this document is MODULE� ���� f��� �v��� h��� �v�	��

��� Remarks

�� A useful instance of renaming is the change of module identi�er� Let envm
be an environment� The renaming r � hfid�MP � ��� id�MI�g� identityi
transforms each model m�id�MP � �� envm to a model m��fid�MI�g ���
envm which has the same set of identi�ers as m but a di�erent module
identi�er� The two modulesMP and MI are syntactically distinct but have
in essence the same semantics�


� The semantic consequence and satisfaction relations are extended from the
�at language to single module speci�cations in the obvious way� a formula
exp in the �visible� language of module M is a semantic consequence of
M i� frm is a semantic consequence of m�id�M�� for every model m in
SemStrucSpec�SP �� i�e�

for all m � SemStrucSpec�SP �� IsAModelOf �m�id�M��� frm�

� The Semantics of Exports

In order to provide semantics for information hiding �ie�� the exports clause of the
interface� and module binding �ie�� the imports clause of the interface� we will
need to use a notion of model reduction� Such a notion has not been developed
for the standardised semantics of the �at language� Instead� we use the notion
of model reduction we introduced in section ��

De�nition �� Let SP denote a structured speci�cation consisting of a simple
module M whose interface has no imports and no parameters� and such that M
exports a collection V ID of public constructs� Then
SemStrucSpec�SP � 	
fm�fid�M�g � ENVid�M� j m�id�M�� � SemHide�V ID�SemSpec�body�M���g
where the semantic function SemHide provides semantics for information hid�
ing as de�ned De�nition 
�

One way to provide semantics to information hiding is by identifying the set of
models after the hiding as the collection consisting of those models that agree
with the reductions of models of the body of the module to the visible language�

De�nition �� Let envset be a set of V ID�environments and inc�V ID � ID be
a language inclusion� The auxiliary semantic function SemHide is de�ned as
follows�

SemHide�V ID� envset� � fmb � inc j mb � envsetg



Consequently�

SemHide�V ID�SemSpec�body�M��� � reduce�V ID�SemSpec�body�M���g

�See section � for a de�nition of the reduce semantic function underpinning
model reduction��

Example 
� Assume that a structured speci�cation consists of the following mod�
ule

module MODULE�

exports

functions ff�nat�
nat�

definitions

functions

ff�x�nat� ffx�nat

pre TRUE

post ffx � ���

hh�x�nat� hhx�nat

pre TRUE

post �	 � hhx� 
 �hhx � ff�x���

end MODULE�

The models of this speci�cation will provide semantic values for MODULE���
only� However� MODULE��hh is used in order to calculate this values and then
it is abstracted away� In e�ect the above speci�cation has the same semantics
with the following version

module MODULE�

exports

functions ff�nat�
nat�

definitions

functions

ff�x�nat� ffx�nat

pre TRUE

post �� � ffx� 
 �ffx � ����

end MODULE�

��� Remarks

�� We note that� since a �no�junk� semantics is followed in representing the
environments assigned to module identi�ers �i�e�� these environments are
mappings with domain the visible language of the module�� the set of mod�
els de�ned as above essentially amounts to the class of reducts of the ��at
language� models of the body� Had a �junk�admissible� semantics approach
�e�g� �

� been followed in representing the environments assigned to module
identi�ers �i�e�� these environments were mappings with domain all construct



identi�ers that appear in the document� then the following modi�cation
would apply� SemHide�idset� envset� � fmv � ENV jmv�id� � mb�id� for
some mb � envset and every construct identi�er id in idsetg�


� Even with the presence of �junk� in the models� there is a signi�cant di�er�
ence between the above de�nition and the one proposed in �

� In our case
export does not simply hide the assignments to the non�visible symbols�
These assignments are �forgotten� in the sense that they do not impose any
direct constraint on the models of the module� Any model that agrees on the
assignment of the visible part with a model of the module�s body is accepted
as a model for the module� Hence formal support for re�nement that allows
avoiding to model what is hidden is supported�

�� An alternative approach to de�ning SemHide than De�tion 
 is by means
of classes of elementary equivalent models� i�e� models that satisfy the same
visible properties�

De�nition �� Let Th�idset� envset� denote the set of formulae in the lan�
guage generated by the constructs with identi�ers in idset which are satis�ed
by envset� Then SemHide�idset� envset� �

fmvjmv � ENV idset andmv satis�es every formula in Th�idset� envset�g
where ENV idset denotes the set of environments for the language generated
by idset�

If this De�nition � is followed then SemHide�V ID�M��SemSpec�body�M���
denotes the set of environments for the visible language of a moduleM � i�e�
the language generated by the exported constructs� which satisfy the same
set of formulae as the models of the body� In general� this set may be a
superset of the set of model reductions which is employed in De�nition 
�
In both cases� SemHide�V ID�SemSpec�body�M��� will satisfy the same
set of �visible� formulae� However� they may admit di�erent re�nements de�
pending on the employed notion of re�nement� In any case� both de�nitions
provide formal support for re�nement that allows avoiding to model what is
hidden�

� Module Binding

In this section we de�ne a semantic function for binding the bodies of the struc�
tured speci�cation and then extend the de�nition to incorporate the exports
interface� The semantic function for the bodies is de�ned in two steps� First we
de�ne a semantic function for binding without protection and the we extend this
function to the case where some imports are required to be protected�

The imports clause of the module interface combines information hiding and
property enrichment �extension� in order to describe the binding of modules in
a structured speci�cation�

It is important to emphasise that� in the context of a structured speci�ca�
tion� �unprotected� imports does not only a�ect the semantics of the importing
module but also the semantics of the imported module� The importing modules



are enriched with the properties of the imported constructs while the imported
modules may be enriched with emerging properties imposed through the import�
ing modules� In subsection ��
 we distinguish a special case of protected import
which places some non�interference restrictions on import in order to ensure that
there are no emerging properties from the importing module to the imported�
In that case the properties of the imported construct are conserved through this
particular information �ow channel� i�e� they are preserved but not enriched�
In ��
 we provide an analogous analysis for the structuring assemblies of the
B�Method�

	�� Unprotected Import

In this subsection we provide a generic de�nition of a denotational semantics for
the bodies of structured speci�cations �with unprotected import� which is rich
enough to capture the information �ow via the import of some constructs and
the resulting mutual dependence between importing and imported modules�

Let SP be a structured speci�cation consisting of a collection M� � � �Mn of
interrelated non�parameterised modules� Let Mi denote a module speci�cation
which imports a collection of constructs IMPij from a moduleMj For simplicity
we assume that all construct identi�ers in SP are distinct� �Otherwise some
renaming may be needed��� Then� the following hold�

� IMPij � V IDj � IDj where V IDj is the collection of all constructs
exported by Mj and IDj is the collection of all constructs that appear in
the body of Mj�

� IMPij � IDi where IDi is the collection of all constructs that appear in
the body of Mi�

� IMPij generates a sublanguage of the visible language of Mj and hence a
sublanguage of body�Mj��

� IMPij generates a sublanguage of body�Mi��

In the following� we de�ne semantics for the body of the structured speci�ca�
tion� The latter consists of the collection of interrelated bodies of the structured
speci�cation augmented with additional constraints induced by the structuring�
These constraints take the form of �binding equations� which provide the se�
mantic basis for capturing the dependence between the bodies of the modules�
Then we localise the above semantics to each individual module of the structured
speci�cation�

De�nition 
� The set SemStrucBSpec�SP� is a collection of MID�indexed
families of environments which provide semantics for the bodies of the modules in
structured speci�cation� The set SemStrucBSpec�SP� consists of these families
of environments senv � �envi���i�n which satisfy the following conditions�

�� envi � SemSpec�body�Mi�� for each i where � � i � n� and

� envi�c� � envj�c� for each identi�er c in IMPij� � � i� j � n




where �Mi���i�n is an enumeration of the modules in SP and envi is a short�
hand for senv�id�Mi���

De�nition �� By SemStrucBSpec�i� SP � we denote the set of the i�th pro�
jections of the families in SemStrucBSpec�SP �� That is�

SemStrucBSpec�id�Mi�� SP � � fmb�id�Mi��jmb � SemStrucBSpec�SP �g

According to this de�nition� if SP is a structured speci�cation consisting of a
collection M� � � �Mn of non�parameterised modules then a model mb for the
structured body of SP amounts to an n�tuple hmb�id�M���� � � � �mb�id�Mn��i
which has the following properties�

�� each mb�id�Mi�� is a model of the �at speci�cation body�Mi�

� ifMi imports respectively constructs with identi�ers in IMPi���IMPik from

modules Mi���Mik then
�a� mb�id�Mi�� is a common expansion to IDi of respectively the IMPi��

�� � �� IMPik�reducts of the importedmodulesmb�id�Mi���� � � � �mb�id�Mik���
�b� each of mb�id�Mi�����mb�id�Mik�� is respectively a model expansion to

IDi���IDik of the IMPi���� � ��IMPik�reduct of the importing module
mb�id�Mi��

The above 
a refers to the enrichment of the body of the importing modules
with the properties of the imported constructs whereas the above 
b refers to
the enrichment of the bodies of the imported modules with the emerging proper�
ties� The two enrichments in above 
 mutually depend on each other� However�
this mutual dependence is reduced to a set of simple constraints realised by
means of �binding equations� between certain denotation assignments when the
semantics of the whole structured speci�cation are considered� Clearly� there may
be models of body�Mi� which do not participate in any model of SP � That is�
the inclusion SemStrucBSpec�id�Mi�� SP � � SemSpec�body�Mi�� generally
holds but may not be invertible because of the emerging properties that may be
induced via the module aggregation� From an engineering perspective� to con�
stitute aggregates of modules via unprotected import is useful for reusing spec�
i�cation text and analysing the overall speci�cation of complex systems where
information �ow between between components needs to be facilitated� In this
respect� �unprotected� import provide the basis for designing �Open� structuring
assemblies��

Example �� Consider a structured speci�cation consisting of MODULE� of Exam�
ple � and the following MODULE��

module MODULE�

imports

from MODULE�

� The term �Open� refers to the �Open�Closed� duality in the design of speci�cation
and code modules� See the conclusion of this paper and �	�� for a further discussion�



functions f�nat�
nat�

exports

functions g�nat�
nat

definitions

functions

g�x�nat� gx�nat

pre TRUE

post �MODULE��f�x� � gx� 
 �gx � ���

end MODULE�

The �unprotected� import identi�es the semantic values of the imported f in the
models of Module� and those in the models of Module�� Hence� the models of
MODULE� are further restricted to those where MODULE��f is the constant function
�v�� and MODULE��h is the constant function �v�	� This illustrates the fact that
�unprotected� import allows constructs in di�erent modules to interfere in each
other semantics as if they were introduced simultaneously in the same module�
Such liberality supports the appearance of mutual imports� As we elaborate in
the sequel this is not the case with protected import�

	�� The semantics of Protected Import

In this section we introduce an alternative form of import which ensures that the
information channel established by importing a set of constructs IMPij from a
host module Mj into an importing module Mi does not allow any information
to �ow from the importing moduleMi to the host moduleMj� In formal terms�
this means that the import conserves the properties of the imported constructs
in IMPij as speci�ed in the the context of the host module Mj� Hence� the se�
mantics of the imported construct is protected against any emerging properties
imposed by the import� Although the engineering purpose may be somewhat
di�erent� this kind of protection is formally related to the assurance of no in�
terference from the importing module to the host module� After all� one cannot
guarantee that any implementation of a module can be available for blind use
elsewhere when emerging properties can imposed to the context of the module
through unprotected import can implicitly alter the semantics of this module�
By protecting the import we provide the contextual basis on which further non�
interference conditions can be introduced� From a logical perspective� protected
import amounts to a property enrichment that is conservative on the �shared�
sublanguage that is formed by the constructs in IMPij�

One way to de�ne the semantic function for �the aggregate body� of a
structured speci�cation with protected import is by �st collecting the environ�
ments that statisfy a structured �partial� speci�cation which ignores the associ�
ations that amount to protected imports while anticipating the information �ow
through unprotected imports and� then� restore in a stepwise manner the disre�
garded associations checking at each step that the non�interference assumptions
relevant to the protected import are satis�ed�



Before de�ning the semantic function for �non�parameterised� structured
speci�cations with import protection we need to introduce the following aux�
iliary concepts�

Connect This is a binary function which takes as input a pair of module identi�
�ers and returns true if there is a �possibly indirect� unprotected association
between the identi�ed pair of modules�

PrDependCore This is the set of module identi�ers that protectively import
a construct�

PrDepend This is the set of module identi�ers that are connected to some
module whose identi�er belongs to PrDependCore�

PrIndieCore This is the set of module identi�ers which do not belong to
PrDepend� This set consists of those module identi�ers whose semantics
are not a�ected by the presence of protected import�

FlowControl This a boolean representing an architectural assumption upon
which the semantic functions to be de�ned rely in order to ensure a consistent
connectivity for import protection�

We assume an enumeration �id�Mi����i�n of the module identi�ers in a struc�
tured speci�cation and we write

IMPij to denote the set of construct identi�ers that a moduleMi imports from
a module Mj without protection�

PR IMPij to denote the construct identi�ers that a module Mi imports from
a module Mj with protection�

inci�PR IMPij � IDi to denote the inclusion of the �construct� identi�ers of
a protected import into the set of construct identi�ers of body�Mi��

incj�PR IMPij � IDj to denote the inclusion of the set of �construct� identi�
�ers of a protected import into the set of construct identi�ers of body�Mj��

MID to denote the set fij� � i � ng of the module identi�ers in SP �

The boolean function Connect checks if there is an unprotected association
between a pair of identi�ed modules�

De�nition �� Connect�i� j� �

IMPij � IMPji �� � or

exists x �MID� IMPix � IMPxi �� � and Connect�x� j��

Note that Connect is well�de�ned because the number of modules and associa�
tions in a structured speci�cation is always �nite� Also note that Connect�i� j�
and Connect�j� i� always give the same value�

De�nition 	�

PrDependCore�SP � � fi j exists x �MID� PR IMPix �� �g
PrDepend�SP � � fi j exists x � PrDependCore�SP �� Connect�i� x�g
PrIndieCore�SP � � MID �PrDepend�SP �



Note that the set PrIndieCore contains the module identi�ers of the larger
subsystem in SP whose semantics are not a�ected by the presence of the speci�ed
protected imports�

The following de�nition extends the notion of a submodel to structured spec�
i�cations�

De�nition �� Let INC�X �MID and SENV be a set of structured environ�
ments� Then�

reduce�X� senv set� � fsenv � INC j senv � SENV g

The following condition FlowControl describes an �architectural assumption�
upon which the appearance of import protection relies in order for the semantics
to guarantee no information �ow from the importing to the host module at the
presence of a protected import�

De�nition ��

FlowControl � for alli� j �MID� if PR IMPij �� � then NoFlow�i� j�

WhereNoFlow is a boolean function ensuring that there is no information �ow
from Mi to Mj via another �possibly indirect� association�

De�nition �
� NoFlow�i� j� �

�i �� j� and

�IMPij � IMPji � PR IMPij � �� and

for all x �MID�

if �i �� x andj �� x and IMPix�IMPxi�PR IMPxi �� �� thenNoFlow�x� j��

Note that Connect is well�de�ned because the number of modules and associ�
ations in a structured speci�cation is always �nite�

If FlowControl holds then

�� Mi cannot import any constructs from Mj without protection�

� Mj cannot import any constructs from Mi at all � hence mutual imports

are excluded at the presence of import protection�
�� ifMi is further associated withMj via third parties thenNoFlow is applied

recursively until the modules that directly associate withMj are singled out
and the above basic two conditions apply�

Furthermore FlowControl implies PrIndieCore �� �� �This implication is
further elaborated in Remark � �subsection ���� and illustrated in Example ���

We are now ready to modify De�nition � in order to incorporate protected
imports� We write SP� to denote the �partial� structured speci�cation that
is produced from SP by eliminating all protected imports and appropriately
renaming the protectively imported constructs so that they are distinguished
from the constructs in the host module�



De�nition ��� The set ProtectSemStrucBSpec�SP� is a collection MID�
indexed families of environments which provide semantics for the bodies of the
modules in structured speci�cation� The set ProtectSemStrucBSpec�SP�is
calculated by the following procedure�

If FlowControl then

�� Initialise
� Pos Models � SemStrucBSpec�SP��
� PRi � fj j PR IMPij �� �g
� priModels � reduce�PRi� Pos Models�
� CHECKED � PrIndieCore


� While CHECKED 	MID do
�a� Initialise INCREMENT � �

�b� For each i �MID such that PRi � CHECKED do
i� let inc�PRi �MID�

ii� If
for each mr � priModels exists mb � Pos Models such that

mb � inc � mr

and

for all j � PRi�mb�i� � inci � mb�j� � incj

then

Assign Pos Models
� � fmb � Pos Models j mb�i� �

inci � mb�j� � incj �
wherej � PRi and �mb�j��j�PRi � PRi MODELSg

else

Assign Pos Models
� � ��

iii� Assign INCREMENT � � INCREMENT � fig
�c� Assign CHECKED� � CHECKED � INCREMENT

�� De�ne ProtectSemStrucBSpec�SP � � Pos Models

else

De�ne ProtectSemStrucBSpec�SP � � �

The fundamental di�erences between this de�nition and De�nition � are that�
�rstly� this de�nition is conditional on FlowControl and� secondly� we have
to stepwisely interpolate the condition 
�b�ii to this de�nition� Condition 
�b�ii
asserts that no potential model of Mi in SP is eliminated because of emerging
properties that are imposed by Mi on PR IMPij�

Example �� Consider a structured speci�cation consisting of MODULE� of Exam�
ple 
 and the following MODULE��

module MODULE�

imports



from MODULE� protected

functions ff�nat�
nat

exports

functions k�nat�
nat�

definitions

functions

k�x�nat� kx�nat

pre TRUE

post �MODULE��ff�x� � kx��

end MODULE�

Firstly� the FlowControl architectural assumption is checked� This reduced to
the validation of NoFlow��� 
�� Secondly� the set CHECKED � fMODULE�g is
formed� Thirdly� the set Pos Models is calculated� In doing this� the informa�
tion that ff is imported from MODULE� is not considered� Hence� any semantic
value of ff that is compatible with the de�nition of k is accepted� Any tuple
�ff ��� �v�F �v�� k ��� �v�K�v�� where F��n� � K�n�� for every natural num�
ber n� constitutes an accepted model for body�MODULE��� In analogy� any tuple
�ff ��� �v�F��v�� k ��� �v�H�v�� where � � H�n� � F��n� � ��� for every
natural number n� constitutes an accepted model for body�MODULE��� At this
stage� any combination of the above assignment tuples constitutes a possible
model of body�SP �� Fourthly � the expandability condition 
�b�ii is veri�ed�
Given some 	 � F �n� � �� one can �nd a possible model of SP such that
F��n� � F��n� and F��n� � F �n�� Finally� the models of body�SP � are those
assignments such that � � H�n� � F��n� � ��� F� � F�� F��n� � K�n�� �See
also section ����Remark 
��

Example �� Consider the extension of the structured speci�cation presented in
Example � with the following module�

module MODULEM

imports

from MODULE� protected

functions hh�nat�
nat

from MODULE�

functions k�nat�
nat

definitions

functions

m�x�nat� mx�nat

pre TRUE

post �MODULE��k�x� � mx� 
 �mx � ���MODULE��hh�x���

end MODULE�

By appending MODULEM to the structured speci�cation of Example � we have pro�
duced a structured speci�cation which is still satis�able but selectively restricts
the variety of model expansions of MODULE��ff that are models of MODULE�� For
example� the tuple �ff ��� �v��� k ��� �v�� � v� is in the MODULE�� projection



of some model of the structured speci�cation of Example � which cannot partic�
ipate in any model of the speci�cation of this example� Had k ��� �v��� v been
accepted as a semantic value for k� the induced constraint that �� � � bounds
k for all natural numbers would be violated� The MODULE��projections of other
acceptable models such as �ff ��� �v��� k ��� �v�� � �v mod 
�� take care that
ff ��� �v�� is maintained as a possible semantics for ff�

Note that this structured speci�cation satis�es the FlowControl structuring
scheme and thatPrIndieCore � fMODULE�g� Furthermore� the information that
for everymb � Pos Models�mb�id�MODULE����id�k�� � mb�id�MODULEM���id�k��
has been accounted at the beginning of the procedure described in De�nition ��
and is preserved in every further step�

Example �� An alternative and equally feasible� version of this example would be
to have MODULEM import ff protected from MODULE�� Another interesting example
would be to have MODULE� import f protected from MODULE� and MODULE� import
f from MODULE� �unprotected� as in Example �� In this case MODULE� would
interfere by imposing emerging properties on MODULE� and hence eliminating
possible semantic values for f as in Example � and MODULE� would be required to
provide expansions from the remaining semantic values of f� Such architectures
are permitted by FlowControl and allow the designer to enrich the speci�cation
of the importing or host modules through interaction with other subsystems
while guaranteeing that information does not �ow from the importing to the
host module�

	�� Remarks

�� Notably FlowControl implies PrIndieCore �� �� Indeed� FlowControl
implies 
i�i � PrIndieCore by disallowing cyclic imports at the presence of
import protection� on the one hand� and by ensuring that �i� j��PR IMPij ��
� � j �� PrDependCore�
 j �� PrDepend� on the other hand�
For example� if Mi imports from Mj with protection and there is some
module Mx which is associated with Mi then the only association between
Mx and Mj allowed is protected import from Mj into Mx� As we demon�
strate in Example �� this architectural condition disallows eliminating any
acceptable semantic values for the protected constructs that could be caused
by uncontrolled implicit information �ow� on the one hand� and facilitates
eliminating unfavourable expansions by allowing information �ow to the im�
portingmodule as far as this does not a�ect the semantics of the host module�
This controlled enrichment of the importing in a way that does not a�ect
the host module provides the formal basis for various practically useful and
theoretically interesting sharing schemes�


� The protection in importing from MODULE� into MODULE� in Example � en�
sures that there are no emerging properties from MODULE� on ff� Hence�
MODULE� has to accommodate all possible semantic values for ff which are
admitted by the speci�cation of MODULE� when the import is not considered�
Whereas there may be some semantic values for k which admitted by the



speci�cation of MODULE� when the import is not considered and are then
eliminated when the �binding equations� are applied� This way� informa�
tion may �ow from the host to the importing module but not in the other
direction�

�� Note that the import of f from MODULE� into MODULE� presented in Example �
cannot be protected� Declaring this import as protected will introduce a
contradiction and produce a structured speci�cation satis�ed by an empty
class of models� This is because� semantic values such as �v�� or �v��	 �
v mod 
� which are accepted with respect to the function de�nitions in
MODULE� are excluded by MODULE��

�� The FlowControl architecture scheme forces contextual decomposition of
a module M into independent segments� each of which can have all its
�public� constructs �protectively� imported into M � This is because the
FlowControl assumes that all the constructs encapsulated in a module
depend on each other by default� Hence� if there are constructs c� and c�
which are declared in M but their semantics are independent one is not
allowed to have some other module M � import c� with protection and c�
without� However� if one decomposesM into two independent �sub�modules
M� andM
 respectively hosting c� and c� thenM � may import c� fromM�
with protection and c� from M
 without protection� If one wishes to avoid
forcing such further segmentation of M then FlowControl will have to be
re�ned to deal with dependence of �imported� constructs instead of modules�
therefore drastically increasing the complexity of analysing the structuring
architecture�

	�
 The engineering value of import protection

In the general case� protected import is particularly useful for sharing code and
providing reference�only access to shared data� In the case of contextual structur�
ing� protected import is useful for for sharing separately implemented� system�
wide types and basic functions which are naturally associated with these types�
The speci�cation of such types can be provided in a stateless module SWT �
By protecting the import of types and functions from SWT one ensures that a
single copy of code will be present in the �nal product and that the correctness
of this code will depend on the speci�cation of SWT only� A particular case of
this is to specify abstract �mathematical� data types speci�ed in an operation�
less shared module and import their constructs in any other machine� Stateless
and operationless modules may not need implementing� they provide a library
of useful mathematical concepts that ease the speci�cation of algorithms and ar�
chitectures� and are usually �programmed away� during the development� From
that perspective� the use of protected import from this modules is analogous to
the use of sees in B� �See ��
 for further details on this matter��

	�� Non�parameterised structured speci�cations

The overall semantic function is de�ned by abstracting away what is not public�



De�nition ��� The semantic function for a structured speci�cation �which does
not contain any parameterised modules� is de�ned as follows�
SemStrucSpec�SP � �

fm�MID � ENV mid j
m�id�Mi�� � SemHide�V IDi�ProtectSemStrucBSpec�id�Mi�� SP ��
for each � � i � ng�

Notably� the above semantics is �sensible� �as opposed to �agnostic�� to the
export clauses that may occur in the modules of SP � For example� if SP con�
tains just two modulesM� andM
 such thatM
 imports IMP� fromM� then
SP will be given di�erent semantics if M� exports all compared to� say� when
M� exports IMP� only� The reason is that the export describes the part of a
module that is visible to the environment and therefore imposes implementa�
tion constraints on the speci�cation� This distinction is important if a notion of
structured re�nement is considered in the future because all visible part of each
a module may need to be re�ned in parallel�

	�� Remarks

�� As we elaborated in this section� the above de�nition of structured speci��
cations accepts mutual unprotected imports� In this case� the only constraint
is that� in each structured model� all imported constructs will be assigned
to identical values in the imported and the �body of the� importing mod�
ules� Hence� the problem of calculating these values is moved to the �at
language semantics where it is treated with respect to the already standard�
ised methods� It is� however� necessary to prohibit mutual dependencies at
the presence of a protected import�


� In addition to facilitating the presentation� the reason for dividing the de�ni�
tion into� e�ectively� semantics of structured bodies and semantics of struc�
tured visible parts is that various layers of information hiding may apply�
There may be constructs whichMi imports from someMj and thenMi does
not export them� This may force repeating the �binding equations� in de�ni�
tions of both structured bodies and structured visible parts because� depend�
ing on the semantics for information hiding� a moduleMi may have models
which are not V ID�Mi��reducts of some model of its body� Hence� the se�
mantic function has to be rede�ned as SemStrucSpec�SP � � fm�MID �
ENVid�Mi� j
m�id�Mi�� � SemHide�V IDi�ProtectSemStrucBSpec�id�Mi�� SP ��
where m�id�Mi���c� � m�id�Mj���c� for all c in IMPij� � � i� j � ng�
However� if the semantics of SemHide provided in De�nition 
 are followed
�as opposed to the alternative semantics suggested in De�nition �� then the
second application of the �binding equations� is unnecessary� �These binding
equations are satis�ed because they are assumed already once in De�nition �
and information hiding is viewed as model reduction��



	 Parameterised Modules

In this section we provide the necessary semantic functions to care about pa�
rameterisation and parameter instantiation in structured speci�cations� Param�
eterisation is viewed as a relation between denotations �an idea analogous to an
adaptation of ��
�� Though parameterised speci�cations� per se� are not given
any semantics� A parameterised speci�cation is viewed as a generic description
of a class of speci�cations� its possible instantiations� The modules that are actu�
ally participating as components in the structured speci�cation are the speci�ed
instances� not the parameterised modules� The methodological requirement that
parameterised speci�cations are instantiated in order to provide building blocks
for a structured speci�cation is consistent with the current practice in VDM�

��� Parameterisation

LetMP be a parameterisedmodule� let PID denote the identi�ers of its param�
eters and let envp � ENV P denote a possible environment for the parameters�
The set of models of body�MP � which are also model expansions of envp to ID
is denoted by expandBody�id�M�� envp� and de�ned as follows�

De�nition ��� expandBody�id�MP �� envp� �

fmb � ENV jmb � SemSpec�body�MP �� and mb � expand�ID� envp�g

where expand�ID� envp� is the set of model expansions of envp to ID de�ned
in section ��

De�nition �
� The set ExpandP�id�MP �� envp� of models of theMP �instance
that is determined by envp is calculated as follows

ExpandP�id�MP �� envp� � SemHide�V ID� expandBody�id�MP �� envp��

Finally� the semantic function for parameterisation takes the following form

De�nition ��� Let MP be a parameterised module� let PID�MP � denote the
identi�ers of its parameters and let envp � ENVPID�MP � denote a possible envi�
ronment for the parameters� The parameter passing is described by the following
semantic function
SemParameteriseBy�id�MP �� P ID�MP �� �

fmp � fid�MP �g � �ENVPID �ENVID� j
mp�id�MP �� � henvp�mi where m � ExpandP�id�MP �� envp�g

Note that expandBody and henceExpandPmay be empty for some particular
PID�MP ��environment envp�� This is because of the constraints that the body
ofMP may implicitly impose on the parameters may be incompatible with some
interpretations of the parameters� If this is the case� then there is no model of
MP involving envp� as an acceptable interpretation of the parameter� This is
taken care in the above de�nition of SemParameteriseBy by ensuring that
that if� for some envp�� ExpandP�id�M�� envp�� � � then this envp� does not
appear in any element of SemParameteriseBy�id�MP �� P ID�MP ���



Example �� The following is an example of a parameterised module�

module MODULE	

parameters

types elem

functions p��elem�
nat� p��elem�
nat

exports

functions sum�nat�
nat�

definitions

functions

sum�nat�
nat

sum�x� � p��x��p��x��

end MODULE	

��� Parameter Instantiation

Parameter instantiation de�nes an instanceMI of a parameterisedmoduleMP �
Its semantics amount to a transformation of a parameterisation into the set of
models of an instance� LetMP be a parameterisedmodule� let PID be the iden�
ti�ers of the parameter constructs� and let M be the actualising module which
provides instantiations with identi�ers IID M for the parameters of MP � Let
inst�PID � ID describe the assignment of the parameter construct identi�ers
to the actualising construct identi�ers� i�e� inst�PID� � IID M �

The semantics of parameter instantiation of MP via inst with respect to M
is provided via a semantic function SemInstantiate which

� takes as arguments

�� the identi�er id�MP � of the parameterised module�

� the identi�er id�M� of the actualising module�
�� the assignment inst�
�� a new module identi�er id�MI�

� for each model mi of M � SemInstantiate

�� selects from SemParameteriseBy�id�MP �� P ID� the set of all the en�
vironments which are associated with the semantic values of the con�
struct identi�ers in IID which are provided by m�


� applies the renaming function SemRename a on the selected set of
environments using the new module identi�er id�MI��

De�nition ��� Let MP be a parameterised module� M be the instantiating
module which provides the instances of the parameters and let inst�PID � IID

denote the instantiation� where PID are the identi�ers of the parameters in MP

and IID are the identi�ers of the instances in M �
The semantics of parameter instantiation of MP via inst with respect to M

is provided via the semantic function SemInstantiate where
SemInstantiate�id�MP �� id�M�� inst� �



fmi�fid�Mi�g � ENVid�MI� j
mi�id�MP �� � SemRename�inst� expand�id�MP ��mi�� where mi �
inst �m and m � SemSpec�body�id�M���g

The semantics for the body of the instantiated module are simply de�ned as
SemSpec�id�MI�� � SemInstantiate�id�MP �� id�M�� inst��

The current practice in VDM ��
� 
�
 is that only instances of parameterised
modules can be used where all parameters are instantiated into concrete con�
structs� Hence� the modules that import from constructs from a parameterised
speci�cation should �rst provide an instantiation of the formal parameters and
the import� The semantics of this import are given by �rst instantiating as above
and then importing from the instance as described in Section �� Note that the
above de�nition of parameter instantiation does not introduce any mutual re�
cursion in the de�nition of SemSpec� This is because there is always a �nite
number of nested instantiations and so all nested occurrences of SemSpec can
be eliminated by simply unfolding the de�nition�

Example �� Consider the following module generating two instances of MODULE	
of Example ��

module MAIN

instantiations

MODULE	�� as MODULE	�elem �
 nat�

p� �
 MODULE��f�

p� �
 MODULE��ff�

MODULE	�� as MODULE	�elem �
 nat�

p� �
 MODULE��g�

p� �
 MODULE��k�

imports

from MODULE	��

functions sum�nat�
nat

from MODULE	��

functions sum�nat�
nat

exports

functions res�nat�
real

definitions

functions

res�nat�
real

res�x� �� MODULE	���sum�MODULE	���sum�x���

end MAIN

It is worth noting that the induced instances MODULE	�� and MODULE	�� have
the same semantics as in the following sharing scheme�

module MODULE	��

imports

from MODULE� protected



functions f�nat�
nat

from MODULE� protected

functions ff�nat�
nat

exports

functions sum�nat�
nat�

definitions

functions

sum�nat�
nat

sum�x� � f�x��ff�x��

end MODULE	��

module MODULE	��

imports

from MODULE� protected

functions g�nat�
nat

from MODULE� protected

functions k�nat�
nat

exports

functions sum�nat�
nat�

definitions

functions

sum�nat�
nat

sum�x� � g�x��k�x��

end MODULE	��

which illustrates an interesting symmetry between parameterised modules and a
special scheme of protected import� Indeed parameterised modules can be seen
as common abstractions of a collection of such protected imports�

��� Remarks

�� Essentially the same semantics for parameterised modules can be presented�
alternatively� by means of a class of partial functions that expand models of
the parameter into models of the body� This presentation is more common
in algebraic approaches to parameterisation� �See ���� ��� ��� 
�
�


� If the semantics of the �at language is augmented with a notion of model
homomorphism then the semantic function for parameter passing will need
to be adjusted in order to capture the additional information provided by
the homomorphims� This can be achieved by extending the semantics of
parameterised speci�cations to capture a class of �partial� functors from the
category of models of the parameter to the category of models of the body
such that each member of the class is a right inverse to the model reduction
functor from models of the body to models the parameter�

�� Another interesting extension of the proposed semantics may be to divide
speci�cations into �generic� which may allow the use of parameterised speci�
�cations and concrete �concrete� speci�cations which require parameterised



speci�cations to be instantiated before being used� as is done at present�
The semantics for the latter are as presented in this section� The former
can be given semantics which are parametric on the sum of the parameters
which are used without instantiation� This extension will allow lifting the
current notion of parameterisation from parameterised modules to parame�
terised structured speci�cations and further facilitate the reuse of design� An
extension of parameterisation to the case where the parameter is a module
speci�cation is also worth investigating�


 The Semantics Of Structured Speci�cations

Let SP be a speci�cation which is build from a �nite collectionM�� ����Mn of in�
terrelatedmodules� A modelm for SP is an assignmentm�MID� � ENV mid�
where MID� is the set of module identi�ers produced by replacing the set of
module identi�ers of each parameterisedmodule inMID� with the module iden�
ti�ers of its instances in SP �

De�nition �	� The semantic function SemStrucBSpec�SP � is de�ned as fol�
lows�

�� calculate all instantiations� then

� remove the parameterised speci�cations� thus producing a structured speci��

cation SP � consisting of non�parameterised modules� then
�� de�ne SemStrucSpec�SP � � SemStrucSpec�SP ���

where SemStrucSpec�SP �� is calculated as described in De�nition �
�

Example �� Consider as an example the structured speci�cation SP consisting
of MODULE�� MODULE�� MODULE�� MODULE�� MODULE	 and MAIN� The denotational
semantics of this speci�cation is the same as the semantics of the structured
speci�cationSP consisting of MODULE�� MODULE�� MODULE�� MODULE�� MODULE	���
MODULE	�� and MAIN� Since SP � has all parameterisedmodules replaced by their
instances� its semantics are calculated as described in section ����

��� The Flattening Operator

Let SP be the structured speci�cation formed from an interrelated collection
of modules M�� � � � �Mn� For simplicity� we assume that all construct identi�
�ers in a SP are distinct� i�e�� that each construct in SP has a unique iden�
ti�er� �If this is not the case then some renaming may be needed�� The �at�
tening of a structured speci�cation SP is a single module speci�cation FSP �
SemFlatten�V IDFS� SP � where V IDFS denotes the set of identi�ers of the
explicitly speci�ed exported constructs� The models of FSP are derived from
the models of SP as follows�

A model mfb�MID � ENV FID of the body of FSP � where FID �S
i ID�Mi� for i � � � � � n� is synthesised from a model m of SP as follows�



mfb �
S
im�id�Mi�� for i � � � � � n� Then the models of FSP are derived from

the models of the body of SP applying information hiding to V IDFS as in
section 	�

Note that the above unions
S
i ID�Mi� and

S
im�id�Mi�� are not disjoint�

The assumption that each construct is given a unique identi�er in SP is im�
portant as it forces the assignments of denotations to the constructs in IMPij

provided by m�id�Mi�� andm�id�Mj�� to con�ate� For recall that the semantics
of imports� as de�ned in this document� ensures that the construct identi�ers of
the imported constructs are assigned identical values� within a structured model�
in the scopes of the imported and the �body of� the importing modules�

�� Conclusion and Further Work

In this paper we discussed compositional denotational semantics for structured
VDM speci�cations emphasising on the contextual structuring� A detailed ac�
count of state structuring and dynamic state generation will be provided in
forthcoming papers� In contrast to what is often thought� there are interesting
and non�trivial interference and compositionality issues to be considered even
at this level of structuring� The semantics discussed in this paper are generic in
the sense that they rely on very weak assumptions placed upon the denotational
semantics of the �at VDM language and will work with a variety of alterna�
tive denotational semantics in addition to the semantics described in the ISO
standard for VDM�SL�

We also distinguished a protected import from the common �unprotected�
import� We provided semantic functions to ensure that� when the import of a
construct is declared to be protected� the importing module does not interfere
in the semantics of the imported construct� This means that the information
�ow channel that is opened via a protected import does not allow any informa�
tion to �ow from the importing module to the module that hosts the imported
constructs� In other words� a protected import does not allow any emerging prop�
erties from the importing module� Import protection has been associated with
an architectural condition upon which it relies to disallow any information �ow
via indirect associations between modules�

At least in formal terms� there is an analogy between the distinction of pro�
tected versus unprotected import and the open � closed duality principle �e�g�
Meyer �
�
�� Where �open� means building larger systems by extensions� e�g�
when appending or amalgamating speci�cation modules� �Closed� means build�
ing an encapsulated component available for blind use elsewhere� e�g� when link�
ing independently constructed code modules� Protected imports underlie the
speci�cation of �closed� structuring assemblies which provide the means for
building an encapsulated component available for blind use elsewhere as when
linking independently constructed code modules� Whereas� usual� �unprotected�
imports underlie �open� structuring assemblies which are useful for building
larger systems by extensions� e�g� when appending or amalgamating speci�cation
modules� Although protected imports may not capture all aspects of a �closed�



structuring assembly� �closed� structuring assemblies rely the assumption that
there are no emerging properties to the context of the associated modules in
order to ensure that the resulting encapsulated component can be available for
blind use elsewhere� One cannot guarantee that any implementation of a module
can be available for blind use elsewhere if emerging properties imposed through
unprotected import can implicitly alter the semantics of this module�

A relevant� elaborate analysis of the non�interference and compositionality
assumptions that underlie contextual structuring mechanisms of the B�Method
is presented in the main track of this conference ��
� In that paper we show how
such assumptions can be violated by inducing emerging properties and therefore
altering the static context of the used� seen or imported machine� To avoid such
violation� a set of contextual proof obligations related to the static part of the
speci�cation have to be considered� In ��
 we provide a set of proof obligations
which are associated with structuring the static context of an abstract machine� a
re�nement or an implementation in B� These proof obligations are necessary and
su�cient to ensure that the properties of the �static� context of the seen� used or
imported component are conserved� i�e� that they are preserved but not enriched�
In the present paper we highlight analogous constraints on the VDM Modules
structuringmechanisms at the denotational level� In a forthcoming paper we will
provide an matching extension of axiomatic semantics for VDM ���� �
 based on
proof obligations which facilitate proof decomposition by capture the structuring
assemblies which are de�ned in this paper by denotational means�

Other contributions presented in this paper include

�� The use dependent functions to facilitate a transparent relationship between
the denotational models of �at and structured speci�cations�


� The use of simple �binding equations� in order to capture the information
�ow via the export�import interface�

�� The �attening operator to correlation to correlate the speci�cation of a sub�
system �seen as an aggregate of modules� with the speci�cation of a single
module�

Although we have used denotational semantics as a means of introducing these
ideas to the VDM community� our prominent goal is to derive proof obligations in
order to verify these structuring assemblies and to facilitate proof decomposition
in modular VDM speci�cations� It is through �semi�automated proof support�
that the structuring mechanisms discussed in this paper can be best utilised� In
the following paragraphs we summarise some other interesting continuations of
the reported research�

The obvious continuation of this research is towards an extension of this
semantics to capture state structuring� Although� in principle the mechanisms
discussed in this paper provide su�cient mathematical tools for capturing state
structuring� further issues have to be considered� In recognition of the fact that
state structuring is the most important aspect of modular VDM speci�cations�
we believe that� in addition to being formally cogent� the treatment of state has
to rely upon mechanisms that are friendly to the designer of the speci�cation and



facilitate an e�cient engineering practice� This may involve presenting as �prim�
itive� structuring assemblies some practically useful patterns which correspond
to di�erent combinations of hiding and protected or unprotected imports�

In order to make the most out of modular structuring the agreed notion of
re�nement needs to be extended so that the following architectural assumptions
are satis�ed�

�� a re�nement between structured speci�cations in the modular language cor�
responds to a family of �parallel� module�to�module re�nements which also
preserves the structuring of modules�


� compositionality of re�nement shall also extend from the �at language to
the module language� the composition of two subsequent re�nements be�
tween structured speci�cations shall be derived from the composition of the
subsequent module�to�module component re�nements�

�� a re�nement between structured speci�cations in the modular language �at�
tens to a re�nement between the corresponding �attened speci�cations�

The concepts of parallel re�nement have been successfully applied in category�
theory based software engineering environments such as Specware �
	� 
�
� A
further study on modularity for diagrammatically structured speci�cations and
parallel re�nement currently on going �	� �
� A rather restricted instance of a
similar idea has been applied for implementations in B ��� ��
�

Other interesting topics for further work include extending the existing in�
terface of the VDM�Modules in order to capture event�based interaction �i�e�� a
module sending and receiving events to another module before� after and during
operations�� multiple export interfaces �as in Java and ActiveX�� the dynamic
creation of associations between modules via a request to a purpose�built �bro�
ker� component �as in CORBA� and self�adaptive �intelligent� interfaces which
can be seen as generic imoprt�export interfaces that are instantiated on demand
and may recon�gure at real�time� �See �
�
 for a further discussion and motivat�
ing on the added value of some of these extensions in software construction��

References

�� J�R� Abrial� The B�Book � Assigning Programs to Meanings� Camb� Univ� Press�
�����

	� Stephen Bear Structuring for the VDM Speci�cation Language� � In VDM �


VDM � The Way Ahead� pp� 	�	�� Springer�Verlag� September ��

�


� J�C� Bicarregui� J�S� FitzGerald� P�A� Lindsay� R� Moore and B� Ritchie Proof

in VDM� A practioners Guide Springer Verlag� FACIT series� ����� ISBN 
�����
��
�
�X

�� J�C� Bicarregui Intra�Modular Structuring in Model�Oriented Speci�cation� Ex�
pressing Non�Interference with Read and Write Frames Ph�D� Thesis� University
of Manchester �UMCS��������� ������

�� Christoph Blaue A Copy Rule Approach to the Semantics of Meta IV Modules �
September ��
��

�� Theodosis Dimitrakos� Formal support for speci�cation design and implementation�
PhD thesis� Imperial College� March ���
�



�� Theodosis Dimitrakos� Parameterising �algebraic� speci�cations on diagrams� In
Automated Software Engineering�ASE���� �	th IEEE International Conference�
pages 		��		�� ���
�


� Theodosis Dimitrakos and Tom Maibaum� On a generalised modularisation theo�
rem� Information Processing Letters������	�������� 	����

�� Th� Dimitrakos� J�C� Bicarregui� B�M� Matthews� T�S�E� Maibaum� Compositional
Structuring in B� A Logical Analysis of the Static Part� In ZB�
���� Proceedings

of the �rst International Conference of B and Z Users� LNCS� Springer�Verlag� To
appear�

��� H� Ehrig� B� Mahr�� Fundamentals of Algebraic Speci�cations �� Springer�Verlag�
��
��

��� H� Ehrig� B� Mahr�� Fundamentals of Algebraic Speci�cation 
� Module Speci�ca�

tions and Constraints� Springer�Verlag� �����
�	� R� Elmstr�m� P�G� Larsen� P�B� Lassen The IFAD VDM�SL Toolbox� A Prac�

tical Approach to Formal Speci�cations ACM Sigplan Notices� 	����� pp� ���
��
September �����

�
� John S� Fitzgerald Modularity in Model�Oriented Formal Speci�cations and its In�

teraction with Formal Reasoning PhD Thesis� University of Manchester� November
����

��� J�S� Fitzgerald and C�B� Jones� Modularizing the Formal Description of a Database
System� In VDM ���� VDM and Z � Formal Methods in Software Development�
Springer�Verlag� LNCS �	
� ����

��� K�M� Hansen� Formalising Railway Interlocking Systems� In Nordic Seminar on

Dependable Computing Systems� Department of Computer Science� Technical Uni�
versity of Denmark� August �����

��� C�B�Jones� Systematic Software Speci�cation Using VDM �	nd Edition�� Prentice
Hall� �����

��� H�J� Kreowski� Colimits as parameterized data types� In Categorical methods in

Computer Science with aspects from Topology� Springer LNCS 
�
� ��
�
�
� Kevin Lano� The B Language and Method� A Guide to Practical Formal Develop�

ment� Springer�Verlag� �����
��� P�G� Larsen� Nico Plat� and Hans Toetenel� A Formal Semantics of Data Flow

Diagrams� Formal Aspects of Computing� ����� December�
	�� P�G� Larsen� B�S� Hansen� H� Brunn� N� Plat� H� Toetenel� D�J� Andrews� J� Dawes�

G� Parkin� Information technology � Programming languages their environments

and system software interfaces � Vienna Development Method � Speci�cation Lan�

guage � Part �� Base language� Number ISO�IEC �

����� December �����
	�� B� Meyer� Object Oriented Construction� Prentice�Hall� ��

�
		� B� Monahan� P�G� Larsen� M�M� Arentoft� S Bear� Towards a Formal Semantics

of The BSI�VDM Speci�cation Language� Information Processing 
�� pp� �������
North�Holland� August ��
��

	
� P� Mukherjee and V� Stavridou� The Formal Speci�cation of Safety Requirements
for Storing Explosives� Formal Aspects of Computing� �����	���

�� ���
�

	�� G�I� Parkin and G O�Neill� Speci�cation of the MAA standard in VDM� In
VDM���� Formal Software Development Methods� Springer�Verlag� October �����

	�� M��L� Potet� Y� Ledru� R� Sanlaville VDM Modules� In VDM in Practice� pp� ���	�
September �����

	�� Y�V� Srinivas� R� Jullig� Diagrams for Software Synthesis� Tech� Report� Kestrel
Institute� Paolo Alto� USA� http�nn ww�kestrel�edu ���
� �Also appeared in the
proceedings of KBSE��
�



	�� Y�V� Srinivas� R� Jullig� SpecWareTM � Formal Suport for Composing Software�
In Mathematics of Program Construction ����� �See also KES�U������

	
� Y�V� Srinivas� Re�nement of Parameterized Algebraic Speci�cations In IFIP TC


Working Conference on Algorithmic Languages and Calculi� Chapman � Hall�
February �����

	�� A� Walshe� NDB� The Formal Speci�cation and Rigorous Design of a Single�User
Database System� In Case Studies in Systematic Software Development� Prentice
Hall� ����


