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Abstract. We study the mechanisms for structuring and modularising
specifications in model oriented specifications, choosing to study the for-
mal specification language B as an example. We propose an extension
of the language that allows one to specify machines whose composing
modules (other abstract machines) may change dynamically, i.e., at run
time. .

The extensions were made without causing considerable changes in the
semantics of standard B. We provide some examples to show the in-
creased expressive power.

1 Introduction

The main advantage of formal methods is that, in addition to eliminating ambi-
guities in specification, they allow for analysis and verification of system proper-
ties. Formal methods support precise and rigorous specifications of those aspects
of a computer system capable of being expressed in a formal language. Since
defining what a system should do, and understanding the implications of these
decisions, are amongst the most troublesome problems in software engineering,
this use of formal methods has major benefits.

However, formal methods are hard and expensive to use and they may require
a strong background in formal reasoning in order to perform the analysis and
verification tasks. In the formal specification process (and even more so in the
formal analysis process), appropriate tool support is a necessity. Simple but
sufficiently expressive semantics, tool support, structure and relevance to the
current systems engineering practice are all important for the $ake-up of a formal
method.
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Model based formal methods such as B[1], VDM[9] and Z{10] are among the
few formal methods currently in use by industry and supported by commercial
tools. They have been used in a variety of industrial case studies for the specifi-
cation and verification of missjon critical systems in application domains varying
from the rail industry to smart cards.

Using such formal methods in the development of a information system is
about: clearing all ambiguity straight from the interpretation of the need, con-
structing a specification both coherent and conform to the need (the model),
elaborating the software system which realises the specification, in successive
stages. The coherence of the model and then the conformity of the final program
in relation to this model are guaranteed by mathematical proofs.

These languages are considerably less expressive than many object-oriented
formalisms, but also considerably simpler, better structured, and in some cases
with important tool support and proof assistance [6][4][7], due to their simpler
semantics.

One of these languages, the B language, has an associated method, described
in {1], and commercial tool support [6][4]. One of the restrictions of the B lan-
guage (and its associated method) is its lack of a useful feature present in object-
oriented languages, namely dynamic creation/deletion of modules or components
(objects in object-oriented formalisms}. However dynamic object management
has now become a common task in the systems design practice. Having this
feature in the specification language of the B method would be equivalent to
being able to dynamically create or delete abstract machines. In this paper, we
make a first attempt to provide an extension of the B language and its seman-
tics, in order to support dynamic management of abstract machines population.
In recognition of the fact that maintaining compatibility with the existing tool
support for the B method is very important, we concentrate on “extending”
(conservatively) the current language and semantics, rather than “changing” it.
In effect we ensure that:

1. one can possibly reduce the semantics associated with the proposed extension
of the B specification language to the standard semantics of the B method

2. the proposed extension does not affect the semantics of the core specification
language of B.

The resulting language is in some aspects clearly more expressive than standard
B, without being in the realm of object oriented languages. We therefore increase
the expressiveness of B by building into the language support for common ac-
tivities of the current systems design practice, while avoiding to introduce the
complexity that is often associated with the semantics of fully-fledged object
oriented languages, including the ohject oriented variants of formal methods.

2 Adding Dynamism to B

In B, the declaration of an abstract machine corresponds to the declaration of
a kind of “template” of a component. An abstract machine is not a compo-
nent itself, since it might prescribe the way many different components work.




The creation of several different specification components corresponding to a
single abstract machine declaration can be achieved by means of renaming and
inclusion (using some of the structuring mechanisms available} of the renamed
machines in some super machine M, similar to what is called cloning in some
object-oriented languages. However, the machines included in a super machine
M are fized (clearly, during the run time of M, neither the modular structure of
it nor the number of included machines change), so abstract machines cannot be
considered as objects, but instead they have to be considered standard modules
of traditional imperative programming languages. The advantages of the concept
of object over that of primitive module are well-known, many of them could be
considered differences between traditional imperative and object-oriented lan-
guages.

We extend the notation of abstract machines to allow for dynamic manage-
ment of abstract machines population. The notation of single, non-interacting
abstract machines is preserved. The changes are in the way we build bigger ma-
chines in terms of more primitive ones, t.e., in the structuring notation. In this
paper, we restrict ourselves to studying a particular type of INCLUDES, the one
characterised by the EXTENDS clause. For the sake of simplicity, we also ignore
for the moment the issues related o the use of parameterised machines, and
explain the concepts for machines without parameters, although it will be clear
how the same concepts apply to parameterised machines straightforwardly.

3 Population Management: The Standard B Approach

To motivate our work, let us introduce an example that shows how a specification
might be structured in B. This example consists of an extension of a variant of
the primitive machine Scalar, found in pages 320 and 321 of [1]:

MACHINE
Scalar
VARIABLES
var
INVARIANT
var & INT
INITTTALIZATION
x:& INT
OPERATIONS
chg(v}) = PRE v &INT THEN wer:=v END
té— val = BEGIN v :=var END
END

This machine consists only of an integer variable, and operations to update and
return the value of the variable. A structured machine built on top of Scalar is
proposed in [1] as well, as machine TwoScalars:

MACHINE
TwoScalars
EXTENDS




zx.Scalar, yy.Scalar
OPERATIONS

swap = BEGIN zz.chg(yyvar) || yy.chglzz.var) END
END

As seen here, multiple copies of Scalar are “imported” in TwoScalars, by means
of copy and renaming of (some of) the language elements of the original Scalar
machine definition [I]. An extra operation swap is declared in this machine,
calling in parallel the chg operations of machines zz and yy.

Now, suppose we decide we need a generalisation of this previous machine,
one in which the number of scalars varies over time by creating or deleting dy-
namically new scalars, and where the swap operation might be applied to any
two machines. The standard way of dealing with this problem in B, as shown in
several examples of Chapter 8 in [1] and also in [8], is by defining a new machine,
which includes both the operations of Scalar, relativised to names for the “in-
stances”, and the population management operations. Machine SeveralScalars
would look as follows, under this approach:

MACHINE
SeveralScalars
SETS
SCALARSET
VARIABLES
yar, scelars
INVARIANT
(var &€ scalars — INT) A (scalars C SCALARSET)
INITIALIZATION
var, scolars ;= 0,0
OPERATIONS
chg{v,p) =
PRE v € INT Ap € scalars
THEN war := (dom(var) — {p}) <t ver) U {(p,v)}
END

v ¢ wal(p) = PRE p € scelars THEN »:=ver{p) END

swap(p,q) =
PRE p € scalars A g € scalars

THEN  var := (dom(var)—{p,q}) < var){(p, ver(q)), (g, var(p))}
END

edd_sc(p) =
PRE pe¢ (SCALARSET — scalars)
THEN (scalars := scalors U {p}} ||
(ANY v WHERE v € INT THEN var := varU{(p,v)} END)
END

rem.sc(p) =
PRE p € scalars
THEN scalors := scalars — {p} |}
var = {dom{var) - {p}) < var
END
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END

Machine definition Scalar had to be discarded, and all the operations corre-
sponding to this machine had to be adapted and included in SeveralScalars.
A set, scalars, is used to denote the names of the active scalar instances. Op-
erations chg and wel, originally defined in Scalar, had to be rewritten in this
machine specification, now relativised to the corresponding instances (see the
extra parameter in each of these operations). Variable var was also incorporated
to SeveralScalars, now representing the values of the original war for each of
the active instances of scalar. The initilisation substitution of Scalar became an
assigment (in fact, part of a parallel assignment) in add_sc, the operation that
adds a new scalar in this machine.

This is a standard approach to the management of multiple instances of
certain objects. It is, certainly, a problem, since the whole specification of a scalar
had to be rewritten. Imagine a case in which the machine whose population we
need to manage, say M, is not as simple as our Scalar machine, and instead
consists of a complex structure in terms of “submachines”; if we want to specify
a machine that manages the population of M, the whole specification of A
must be rewritten. Therefore, specifications cannot be modularised into natural
conceptual entities, proofs cannot be “localised” to relevant specification parts,
etc.

4 A Notation for Dynamic Creation of Machines

Because of the problems mentioned in the previous section, we suggest it is
possible to provide B with a richer notation, that allows us to dynamicaily
manage the population of abstract machines. The general form of cur notation
is not difficult to understand. The AGGREGATEsS M, clause in a machine M
indicates that multiple machines of type M; are available in M ,in the same style
of ExTENDS. Included machines are declared to belong to an instance set, whose
name is M; Set (in our case ScalarSet). Instance sets are used to characterise live
instances of machine types.

A machine equivalent to SeveralScalars, given in the previous section, written
in our proposed extended notation is:

MACHINE
SeveralScalars’
AGGREGATES
Scalar
INITIALIZATION
ScalarSet == 0
OPERATIONS
swap(p,q) =
PRE p ¢ ScalarSet A g € ScalorSet
THEN  p.chg{g.val) || g.chg(p.val)
END
END

s




In contrast to machine SeveralScalars, machine SeveralScalars’ is defined in
terms of the primitive machine Scalar. It does not include the declaration of a set
of instances (scalars in machine SeveralScalars), since it is declared implicitly,
by the AGGREGATES clause. Two operations, called add.Scalar and del_Scalar,
are automatically generated and implicitly included by the AGGREGATES clause.
These operations are meant to manipulate the population of instances of scalar;
for our example, they are defined in the following way:

add.Scaler(p) =
PRE p e (NAME — SealarSet)
THEN ScalarSet := ScalarSet U{p} || p.init
END

del_Scalar{p) =
PRE p € scalars
THEN ScelarSet := ScalarSet — {p} ||
var = {dom{war) — {p}) < var
END

The set NAME is assumed to be defined; it denotes the set of all names of
machines (more than one machine type might be agpregated by a particular
machine). It is assumed that the graph corresponding to the AGGREGATES de-
pendency between machines is acyclic; in other words, no recursive (either direct
or indirect) aggregation is allowed'. The notation p. chg(z) is in fact just a conve-
nient more readable way (borrowed from object orientation) of writing chg(z, ),
i.e., pis simply an extra argument of chg.

An extra operation, init, is available for instances of Scalar. This is not
explicitly declared in the aggregated machine as an operation, but corresponds
to the substitution defined in the INITIALIZATION clause, now relativised to an
instance. For example, for the case of scalars, the initialisation was:

var € INT

Then, p.inst is defined as:
ANY v WHERE v € INT THEN war = var U {{p,v}} END

This expression is rather complicated, because we need to maintain the nondeter-
rninism in the original substitution. Consider a simpler initialisation assignment,
such as:

var =0

Then, p.init would be simply defined as:
var = var U {(p,0)}

In case any of the automatically generated operations of the aggregating
abstract machine should not be exported, a wrapper machine promoting the
interface operations could be declared, as is usual in the B method.

! This restriction could be transformed into a type checking condition.
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5 Providing Semantics to the Extension

The straightforward way to provide semantics to the syntax extension is by sim-
ply indicating that specifications like SeveralScalars’ are syntax sugaring for an
equivalent flat specification, like SeveralScalars; therefore, we could take advan-
tage of the already well-defined semantics and consistency checkings of standard
B for the syntax extension.

A flat version of specification M; which aggregates a primitive abstract ma-
chine M is constructed as follows:

the declaration of set M Set, subset of NAME (specified in the INvARIANT
section),

all variables defined in M, relativised to names of instances, i.e., assuming
they are of function type, we add set M Set to the domain cartesian product
of the corresponding operation (this is specified in the INVARIANT),

all operations defined in M, relativised to names of instances, i.e., with an
extra parameter , belonging to set M Set (this is specified in the pre-condition
of the corresponding operation), ,

the declaration of sets, variables, invariants, operations, etc, defined explic-
itly in Afy; if an explicit operation of M; calls an operation op of M, then
op must be unfolded.

the definition of operations add.M and del_M, which are automatically gen-
erated from the definition of M (recall that add M is rather complex, since
it performs the “initialisation” of the added machine). We do not describe
here the precise procedure employed to generate these operations, but it can
be inferred by the way we defined them for specification SeveralScalars’.

f

;

]

There are just a few very basic differences between the flat SeveralScalars’ ob-
tained applying the above procedure and machine SeveralScalars; we use a gen-
eral sort, called NAME, as the domain of names for machine instances (recall that
in the flat specification SeveralScalars, a special local set named SCALARSET
is used). It is easy to extend the core of B with a definition of a set NAME, and a
sufficiently big number of constants of this sort; in fact, it is even not necessary
to incarporate this to B’s core, but instead a stateless abstiract machine contain-
ing the definition might be declared, and implicitly used in all other machine
declarations.

5.1 Proof Obligations for AGGREGATES

Using the approach to the semantics of the extension described above, we would
be provided with a more suitable notation for dynamic population management
of components, but to check for consistency we still would need to flaten spec-
ifications, and redo all checkings, instead of relying on properties of the more
primitive machines. This is certainly not what we want, since we would like to
treat AGGREGATES as a proper structuring mechanism, and not just as a short-
hand for an unstructured flat specification. Therefore, we need to study de extra




proof obligations for the extension, on the basis of the assumption that the proof
obligations of the compound machines were already discharged.

Let us consider then, a general abstract specification of a machine, which
aggregates a primitive one, and with the simplifications implied by the fact we
are not considering parameterised machines. An abstract primitive machine is
defined below:

MACHINE
M
SETS
s
CONSTANTS
c
PROPERTIES
PROP(s,c)
VARIABLES

v
INVARIANT
I{s,c,v}
INITIALIZATION
INIT
GPERATIONS
r+—op(z} = PRE PRE THEN § END

END
For this machine, the corresponding proof obligations are the following:

IC1 3s,¢: PROP(s,c)

IC2 PROP — Ju: 1

IC3 PROP -» [INIT|I

IC4 (PROP AI APRE) — [S|T

Now, suppose we have a machine specification M;, which aggregates M, and

which satisfies the visibility rules imposed by an ExTENDs to the linguistic ele-
ments from AM:

MACHINE
M,y
AGGREGATES
M
SETS
51
CONSTANTS
Ci
PROPERTIES
PROP{(S]_,C;[)
VARIABLES
Vi
INVARIANT

]




)
)
)
)
/
)
)
)
)
)
)
)
)
)
)
)
)
)
)

11(31,6‘1,’1)1)
INITIALIZATION
INITY
OPERATIONS
r+— op;(x} = PRE PRE, THEN §, END

END

In order to realise about which proof obligations we need to discharge to verify
that M; is consistent, we generate a flat specification MJ, equivalent to M, in
the way we explained in previous sections, and analyse its corresponding proof
obligations. Machine M| generated from M) using the procedure described in
previous sections is:

MACHINE
M;
SETS
8,81
CONSTANTS
c, 1
PROPERTIES
PROP(s,c} A PROP(s51,21)
VARIABLES
v,
INVARIANT
I'(s,e,v" YA I (s1,1,01)
INITIALIZATION
INIT,
OPERATIONS
7 +— op(z,p) = PRE PREAp€ MSet THEN 5’ END
r+—op{x) = PRE PRE, THEN §; END
add_-M(p) =
del_M(p) =

END

Machine Mj is a flat abstract machine, so its corresponding proof obligations
are similar to those described above for M. Assuming that the proof obligations
of M were discharged, let us study the proof obligations of M]

IC1 3s,¢,81,¢1 : PROP(s,¢) A PROPy(s1,¢1). Since we assume that proof obli-
gations of machine M were already discharged, we know that

ds,¢: PROP(s,c)
‘Therefore, this proof obligation is reduced to:

381,61 H PROPl(S;,CI)




102 PROP A PROP, — ', vy : I'(v") A T1(vy). Since we know that
PROP — v : I{w)

then, and because of the way we generate I’ (I’ is equivalent to I, modulo
the extra parameter added to certain linguistic elements of M), we know
that

PROP — F' : I'(v"}
is satigfied. Therefore, this proof obligation is reduced to:

PROP/\PROP]_ — 3’{)1 1I1('U1)

IC3 PROP APROP; — [INIT{)I' Al;. This proof obligation cannot be reduced.
IC4 This corresponds to verifying that the operations preserve the invariant:

o (PROP APROP1AI'AIy APRE Ap € MSet) — [S']I' Al Part of
this has been already considered in the proof obligations of machine M:

(PROP NI A PRE) -+ [S)I

Therefore, and because of the way we generate §' (again, §' is equivalent
to §, modulo the extra parameter added to certain linguistic elements
of M), the proof obligation can be reduced to:

(PROP A PROP; ANI' NIy A PRE Ap € MSet) — (8,

e (PROPAPROPy ANI' AT APRE) = [S1]{' AT, This proof obligation
cannot be reduced.

o (PROP A PROPy A" ANI1 Ap € (NAME — M Set)) — [add_body)l' AT,
Because of the way the body of the add operation is defined, we know
that, if

PROP — [INIT|I

was proved, then the add operation will preserve I, again, due to the way
we generate I' (recall that the add operation performs the initialisation
of the aggregated machine). This proof obligation is then reduced to:

(PROP A PROP; ANI' ATy Ap € (NAME — M Set)) = [add.body] I,

e (PROP APROP\AT' NIy Ap € MSet) — [del_bodylI' A Iy. This proof
obligation cannot be reduced.

Further improvements or reductions in the proof obligations could be per-
formed if we impose some extra (possibly type checking} conditions on speci-
fications which make use of AGGREGATES. For instance, if 71 cannot make any
explicit reference to M Set, then operations edd .M and del M would trivially
preserve the invariant.




6 Conclusions

We have argued about the benefits of extending the notation of the B language
to support dynamic management of abstract machine population. We proposed
a preliminary notation, in whick we generalise the EXTENDS clause (by defining a
new clause AGGRECATES) to support dynamic creation and deletion of machines.
The semantics of standard B is preserved by the extension, and just very simple
machinery had to be built on top of B’s core.

The mechanisms via which we can extend the B language have been used
in [5], in the context of object-oriented modelling languages, and in [2][3], in
the context of axiomatic specifications of reconfigurable architectures. Other
concepts introduced in this previous work, such as the use of associations and
inheritance, remain to be studied in the context of model oriented specifications.

Among our priorities for future research in this direction are:

— to generalise the concept of aggregate to support associations between dy-
namic sets of instance machines. ,

- to study similar concepts to aggregate supporting specification structuring
within the IMPLEMENTATION construct of the B method;

~ to study the generalisation of the REFINEMENT construst to accomodate re-
finement between aggregates of dynamically managed instances;

~ t0 provide a mechanism that allows instances and associations to be com-
posed into a subsystem instance;

All the above are necessary for acheiving dynamic management of component
populations within specifications in the B language. A similar approach should
also be possible for a larger group of similar model oriented specifications such
as Z and the module version of VDM.
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