UBLBLOPIVIIIIPIOIIIIIEEEEEEIIEGERUS

®

Using TOBIAS for the automatic generation of
VDM test cases

Olivier Maury, Yves Ledru, Pierre Bontron, and Lydie du Bousquet

Laboratoire Logiciels, Systémes Réseaux - IMAG
B.P. 72 - F-38402 - Saint Martin d’Héres Cedex - France
{0tivier.Maury, Yves.Ledru}®imag.fr

Abstract, TOBIAS is a tool for the automatic generation of a large
set of similar test cases from a test pattern. The goal of the tool is
to generate larger and more exhaustive testsuites than a classical man-
ual process. This paper presents the principles of TOBIAS and reports
on experiments to combine TOBIAS with VDMTools, in order to test
implementations against VDM specifications. Qur experiments compare
the effort of producing tests with TOBIAS with a mamally developed
testsuite. It shows that the tool detects more errors than the manual
testsuite for a similar test design effort.

1 Introduction

Software testing is currently consicered as one of the major V&V activities to
ensure software quality. Automatic generation of test cases is one of the cur-
rent challenges of automated software engineering. Due to the complexity of
current applications, numercus test cases are needed for a given application in
order to increase confidence in the esting process. In recent experiments [5], we
have stated that test cases within a given testsuite often feature a high level
of similarity. It 1s often the case that many test cases correspond to the same
sequence of method calls, with diflerent parameters. Producing these test cases
Is a repetitive task thatl reveals the need for adeguate tool support.

This is the goal of the TOBIAS tool[2], developed within the COTE project!.
Starting from a test pattern and the identification of groups of parameters and
operations, TOBIAS generates a large set of similar test cases. The tool was
initially build in order to generate test purposes for the TGV tool {8], but the
experiments reported in this paper show that it can also be used as a test case
generator.

This paper presents a combination of TOBIAS with VDMTools [7]. VDM-
Tools provides a testing infrastructure where an implementation can be com-
pared to some specification by executing it with given iest cases. We will show
how TOBIAS can be used to systematically generate a very large set of these test
cases. We also report on a simple case study which tends to compare the effort
required to use our tool with the effort spent to write a VDMTools testsuite.

' COTE is a french RNTL project that groups Softeam, France Telecom R&D, Gem-
plus, IRISA and LSR/IMAG.

2 Testing with VDMTools

VDM [9,6] is a model-based specification language. Specifications are a combina-
tion of invariant definitions for types or variables, and pre- and post-conditions
for operations. Such assertions can be compared to executable code: provided
these assertions are carefully written, it is possible to evaluate invariants and
pre-condition on the entry of an operation, and invariants and post-condition on
its exit. This corresponds to conformance testing, where the evaluation of the
assertions provides the oracle of the tests.

Conformance testing[3, 10] is a kind of black box testing. In black box lest-
ing[1], what happens inside operations is hidden. This is not exactly what hap-
pens with VDM Tools where assertions are also checked inside operations.

~ When a VDM operation is implemented in terms of other VIIM operations,
the pre- and post-conditions are evaluated for the nested calls also.

~ Each modification of a state variable within the body of the operation leads
to a new evaluation of the invariant.

VDM Tools provides thus a combination of black box and white box testing.
Moreover, it offers a measure of the coverage achieved by the testsuite in terms
of a percentage of the specification that has been exercised by the testsuite.
Each operation is composed of expressions located cither in the pre- and post-
conditions, or in the actual code that implements the operation. So, the test
coverage of an operation is the number of expressions that are evaluated by
the test suite divided by the total number of expressions that define the tested
operation.

3 A case study

In order to illustrate and evaluate our approach, we have used a simple group
management case study. A class of students is divided into small groups. "These
groups mus} conform to the following constraints:

— a group is composed of 3 o 5 students; if the class is less than 3§ students,
they must belong to the same group;

— the largest group has at most one more student than the smallest group;

— each student belongs to one and only one group.

This is expressed in the following VDM specification. First we declare the
minimum and maximum sizes of groups as constants (values). In this specifica-
tion we take advantage of the 1im composite type to enforce a property of these
constants. The invariant guarantees that when a group has reached the upper
limit, it is still possible to split it into two groups of the smallest size to add an
new student. For example, a class of 5 students corresponds to a single group,
and a class of 6 students to two groups. If the lower limit is set to 4, there is no
way to share a class of 6 into valid groups.

Y ¥V VU VP UVUYU VY UbOUUBUOUUYUYUVOGEUSL

v ¥ YV YUY

L

v U U U

vaiues limit : Xim = mk_1im{3,5)

types
lim :: min : nat
max : natl .
inv mk lim(min,max) == ((max+1)div 2) >= min;

Students are modelled as sequences of characters, group identifiers as strictly
positive naturals, and type table is defined as a function (map) from students
to group identifiers.

student = seq of char;
gr_id = natil;
table = map student to gr_id,;

Having introduced these types, the state variables can now be defined. There
is actually one single state variable gr which stores the assighment of students
to groups. The state invariant guaraniees that:

- the size of the largest group (size_max_gr}is lower than the maximum limi;

—~ the largest group has at most one more elemnent than the smallest one;

— the size of the smallest group is greater than the minimum limit (provided
that there are more than one group).

The state variable is initialized to the empiy map. Functions size_max_gr and
size_min_gr are specified elsewhere in the specification; for brevity reasons,
they are not given here.

state groups of
gr : table
inv mk_groups(gr) ==
size max_gr(gr) <= limit.max
and
(size_max_gr(gr) - size_min_gr(gr) <= 1)
and
if card rng gr > 1 then
size_min_gr{gr) >= limit.min
else true
init ¢ == G = mk_groups{{|~>})
and

These types and state definition guarantee the properties stated at the be-
gining of this section.
Several operations are defined in combination with this state.

- load_table loads a table in variable gr;
— swap_two_ students exchanges two students, each of them going into the
group of the other;

— add_group increments the number of groups, keeping the same students and
modifying their assignment inte groups;

~ add_student adds a new student to the class; the operation may modify the
group assignments of the other students if needed;

— add_set_students applies add_student to each student of the set given as
parameter;

~ delete_student removes one student from the class, and may modify the
group assignments of the other students;

— change_student moves a student into a group whose number is given as
parameter;

— mizx and mix_better arbitrarily modify the group assignments;

~ print_groups displays the students of the class as a set of sets of students.

Due to the strong invariant on gr, applying most of these operations may
result in large modifications of the assignment of students to groups. The specifi-
cations are written in a non-deterministic manner to allow various ways of mod-
ifying these assignments. Some examples of operation specifications are given in
the sequel of this paper.

4 Testing specifications with VDMTools

Let us look into more detail at some of these operations. load_table takes a
table and loads it into gr. The pre-condition states that the table should have
the praperties expected for a valid share of students into groups.

load_table:table ==> ()
ioad_table(t) ==

(gr := t)

pre size _max_gr(t) <= limite.max
and
(size_max_gr(t) - size_min_gr{t) <= 1)
and

if card rng t > 1 then
gize_min_gr(t) >= limit.min
else true
pest gr = t

swap_two_students is an operation that exchanges two students. Each of
them goes into the group of the other. The pre-condition states that both stu-
dents must belong to a group, i.e. they are in the domain of the gr. The post-
condition is expressed in a declarative style:

~ the first conjunct states that the domain of gr is the same as the domain of
the initial gr (~ is the ASCII version of the VDM “hook” which denotes the
initial value of a variable);

— the second and third conjuncts express that el and 2 have exchanged their
group assignments;

PV VUV UYUDPUYUYUYUPYE YUY UE UYL UEUG

BUUVLVBLULLLSB VWY

— the last conjunct expresses that gr did not change for other dornain values
than e1 or €2 (<-: is the domain deletion operator).

The code for this operation applies a double modification to the gr map, assign-
ing et into the group of €2, and conversely.

swap_two_students : student * student ==> ()

swap_two_students(el,e2)==

(gr := gr ++ {el |-> gr(e2), e2 {-> gr(el)})

pre ei in set dom gr and e2 in set dom gr

post dom gr = dom gr” and gr(el) = gr~(e2) and gr(e2} = gr-(el)
and {el,e2} <-: gr = {el,e2} <-: gr~

These two operations can be tested by the following sequence:

"Sequence 1",
load_table({"a’|=>1,"b"i->1,"c"|->1,"d"|->1,"e" |->2,"£"[->2,
ngti->2}),

swap_two_students{"a","b"),

swap_two_students{"a","e"),

swap_two_students("a","a")

This sequence first loads a class with two groups, then tries to perform several
exchanges. The test coverage measurement of VDM Tools reports a full coverage
of swap_two_students and 97% of load_table

5 Finding errors

Let us now have a look at a variant of swap_two_students. The swap_two_stud-
entsF operation has the same specification (pre- and post-condition) but a
slightly different code: a local variable g is declared to temporarily store the
group of el; then the group of el is modified and finally the group of e2 is
assigned to g.

swap_two_studentsF : student * student ==> ()

swap,two._studentsF(el,e2}==

(del g @ gr_id := gr(el}; gr{ei) := gr(e2) ; gr(e2) := g)

pre el in set dom gr and e2 in set dom gr

post dom gr = dom gr~ and gr(el) = gr-(e2) and gr(e2) = gr-(el)
and {el,e2} <—: gr = {el,e2} < gr~

This code is wrong because the invariant may be false after the modification
of gr{e1). The following test case exhibits this error.

1oad_table({“a”]—>1,“b"|—>1,"c“]~>1,"d"|->1,”e”|—>2,”f"|“>2,
ugn|_>2}),
swap_two_studentsF("£","a")

Here, "£" belongs to the smallest group. After gr(e1) := gr(e2), group 1
has 5 elements and group 2 only 3, which breaks the invariant.

It is interesting to notice that sequence 1 in section 4 has 100% coverage but
does not reveal this error, because swap_two_students("a","e") first moves
the element of the largest group.

This rather irivial example shows that blindly trusting the test coverage in-
formation leads to incomplete testsuites. Moreover, when these tesisuites are
writtern “by hand”, they tend to be small. When specifications and implementa-
tions get bigger, there is a definite risk to overlook some useful test cases. This
is where TOBIAS is of interest, by helping the software engineer write a large
and more exhaustive testsuite.

6 TOBIAS

TOBIAS is a tool for automatic generation of test cases from a given test pattern.
Writing test cases is a very tedious and repetitive task, especially when we need
a large set of test cases. This is where 'TOBIAS helps produce a large set of
similar test cases. We have experimented that many test cases feature the same
sequence of operations but with different parameter values. Other sequences may
also differ by exchanging an operation with a similar one,

TOBIAS allows the user to defiue a set of relevant values for each operation
parameter or to identify sets of similar operations (named “groups” in TOBIAS).
These form the basis for the definition of test patierns (named “test schemas”
in TOBIAS). A test schema is a bounded regular expression over operations and
groups. Test schemas are then unfolded by TOBIAS into a large set of test cases.

We expect that TOBIAS will help test engineers generate meore tests cases
and in a more systematic way for about the same effort than “manually” written
test cases. Generating more tests may increase the confidence in the testsuite.
Generating these more systematically will help cover more behaviours of the
system, including situations that could be overlooked or forgotien by the test
engineer. So we may reasonably expect that TOBIAS increases the chance of
detecting errors.

6.1 Iteration over parameter values

Let us now illustrate the use of TOBIAS on some small examples. First we start
with the test of swap_two_students.

[Group Name | Operation Name | Parameter(s) [
LoadStudents load_table o [{ra |- > 1,"b" - > e |- > 1,
w1 e |- > 2, - > 2,
gl >2)
SwapStudents|swap_two_students | el "yl e2 Har
llfll llb"
lle"
||f!l

9 4 49

lg

8 YV U V¥

¥ U

£}
b

4 8]

L A

P U ¥ ¥ ¥ Ub

LU R

U U U VU Y

The starting point is the identification of groups.

1. We define a LoadStudents group, composed of the load_table operation
with the parameter value {"a"{~>1,"d"|->1,"¢" [~>1,"d"|->2,"e"[->2,
wgnf->2,"g" | ~>2}, This group actually includes a single element.

2. We define a SwapStudents group, composed of the swap_two_students op-
eration with the following parameter values: "a", "f£" for el and "a", "b",
we", "f" for e2. This second group has 8 clements.

These groups can be exploited by the following test schema:
LoadStudents;SwapStudents™1..2

This schema means that TOBIAS will generate ali the test sequences that are:
an operation call from the LoadStudent group followed by one to two operation
calls from the SwapStudent group. This schema unfolds into 72 (1%{8 + 8*8))
test cases. They have the same coverage than the manually written test sequence,
but if applied io swap.twe_studentsF, they now include tests that detect the
error described in section 5.

"Test case 1",
103d_t&b18({“&"|—>1,"b”|ﬂ>1,"c"lW>1,"d"|w>1,“e"|W)2,"f”|w)2’
ugu1_>2})’

swap_two_students(Ma","a"),

"Test case 2",

load_table({"a"|->1,"b"|=>1,"c" |->1,"d"[=>1,"e" |->2,"£"{->2,
nan->2}),

echanger_deux_etudiants("f","a"),

"Test case 3",

load_table({"a"{->1,"b" |->1,"c"|->1,"d"{->1,"e" |->2,"f" [->2,
"gn->2}),

swap_two_students{("a","b"),

"Test case b",
load_table{{"a"|~->1,"b"|->1,"¢"|->1,"d"|->1,"e" | ->2,"f"|->2,
"g'1->21)

swap_two_students("a","e"},

"Test case 35",
load_table({"a"|->1,"b"[->1,"c"{->1,"d"[->1,"e" |->2,"£" | ->2,
"gt->21),

swap.two_students("f","b"),

swap_two_students("a","b"),

"Test case 72",
load_table({"a"i=>1,"b"1->1,"c"[->1,"d"{->1,"e" | ->2,"£"[->2,
ntgri->2}),

swap_twowstudents(“f”,"f“),

swapmtwo_students("f","f")

Test, cases 1, 3, and 5 correspond to the test cases of section 4. Test case 2 cor-
responds to the test presented in section 5 that exhibits the ervor of swap_two_s-
tudentsk,

More complete testsuites can be generated by defining several values for
parameter t of load_table. This would allow to perform these tests with an
empty class of students, or with various combinations of groups. Such a testsuite
allows the error to manifest itself in several ways: while the above mentioned test
case broke the second conjunct {difference between groups) of the invariant, other
test cases also break the first conjunct (maximum number) resulfing in a group
of six students. This makes the testsuite more robust towards evolutions of the
specification. '

6.2 TIteration over similar operations

The change_student operation takes two parameters . e, a student, and g, a
group number. It assigns the student to the group and performs the necessary
adjustments to keep the invariant. It 1s specified as follows.

— The pre-condition ensures that the student and the group already exist.

- The post-condition states that the domain of gr does not change, 1.e. the
students of the class remain the same, and that the student given as param-
eter is assigned to the mentioned group. Everything else (number of groups,
group numbers, other assignments) may change.

The proposed code picks up e2, onc of the students of group g, and swaps
him with e.

change_student:student * gr_id ==> (O
change_student(e,g) ==

(let e2 in set dom{gr :> {gh)

in swap_two_students(e2,e)

)

pre e in set dom gr and g in set rng gr
post dom gr = dom gr~ and gr(e) = g

The following test sequence was produced for change_student. Once again,
although very short, it offers 100% coverage of the operation.

U b U UL O U U U O VUUB U UUYV VY BUULU VB UYUUULUVBGGBGEW

s

"Sequence 2",
load_table({"a"|~>1,"b"{~->1,"c"[~>1,"d"{->1,"e"|->2,"{"]->2,
ngt|->2}),

change_student("a",1),

change_student("a",2),

change_student("f",1),

Fhere are obvious similarities between change_student and swap_two_stu-
dents. Not only is the one implemented on basis of the other, but also because
they both result in some student being assigned to another group, this group
being specified explicitly or implicitly. This similarity also appears in the test
sequences, both test sequences test the transfer into the other group and in the
same group.

TOBIAS makes it possible for the tester to express this sirmlarity by extend-
ing the definition of group SwapStudents:

| Group Name | Operation Name | Parameter(s) |
LoadStudents load_table toHMat |- > 1,"b" - > 1, - > 1,
M- >3 e |- > 2, - > 2
gl >2)
SwapStudents|swap_two_students | el nat el al
l!fll ubn
!Iell
IIfN
change.student e "a £ 1
nfn 2

Now SwapStudents groups § instanclated calls to swap_two_students with
4 instanciated calls to charge_student. We can reuse the already defined test
schema:

LoadStudents;SwapStudent™1..2
TOBIAS unfolds this schema into 156 (1*(124-144)) test cases.

"Test case 1",

load table({"a"|->1,"b"[->1,"c" [~>1,"d" [~>1,"e"|->2,"£"[->2,
nghi->23}),

swap_two_students("a","a"),

"Test case 2",

load_table({"a"|->1,"b"|->1,%c" [->1,"d"|->1,"e" | ->2,"£"[->2,
rgrti->2}),

swap_two_students("£","a"),

"Test case 30",
load_table({"a"|—>1,"b"|—>1,”c“§—>1,"d"|*>1,“e”|—>2,“f"|—>2,
"g"|->21)

swap_two, students("f","a’

a"),

swap_two_students("f","e"),

“"Test case 45",

load_table({"a"|->1,"b"[->1,"c" |->1,"a"|->1,"e" |->2,"f"|->2,
ng'|->2})

swap_two_students("a","b"),

change_student("a™,1),

"Test case 142",

1oad_table ({"a"1~>1,"Db" |=>1, "¢ |=>1,"d" [~>1,"e" [->2, £ | ->2,
gt ->21),

change_student("a",2),

change_student ("£",1),

These test cases include the manually defined tests, but apply these in a more
exhaustive manner. Moreover, the grouping mechanism of TOBIAS generates
combinations of both operations. Finally, 1t also worth mentioning that the effort
of defining groups and test schema is similar to the effort of manually writing
the two short sequences of tests.

7 Using brute force

7.1 Groups and test schema

The next experiment is an attempt to test the whole specification. Figure 1 shows
the definition of several groups. They are used by the following test schema:

LoadTable; Add3tudents™0..1; Mix~0..1; Swap,; Delete

This schema aims at covering most of the specification in a single testsuite;
it loads a table, adds several students, performs some modifications of the group
assignments {mixing or swapping}, and finally deletes some students. The un-
derlying idea of this schema is to exploit “brute force”: the schema unfolds in
4320 test cases that exercise various configurations of the initial table and of
the operations. Moreover, the schema. also takes advantage of nested calls: many
operations of the specification are defined in terms of other operations (as we
saw for change_student).

U U UV UL O O VI P IUYUUVU U UU U VU U UUL L UVEGUBU UG

Group Name| Operation Name | Parameter(s) |
Hal | - 1}
{"a"1->1,"b" |- > 1,%" |- > 1}
{Ila!l - 1’ Bt | L > 1’ [1,

LoadTable load.table tond] ->1,%" |~ > 1}
"at - > 1,"b" |-> 1, |- > 1,
tdt s> 1 e |- 2, > 2,

Plgll l - 2}
{nzn
{"Z", nyn}
AddStudents | add_set_of_students | ee {rat, myn, gt e

{uzn, uyn, "X“, “W", |5Vu}
“Z“, Ilyll‘ Hxll’ I!wll’ llv!" I‘al!}

a

Delete delete_student, e A

"e”

Swap swap_two_students | el "al e2 ral
||f‘n “Z"
fl\v”

swap_two_studentsl | el talt el *alt
||fn UZH
ll\vll
change_student e "alt g 1
I‘V”

Mix mix
mix_betier

Fig. 1. Groups to test the whole specification

7.2 Coverage

Figure 2 compares this testsuite to a manually developed test suite. The man-
ually developed testsuite is about 45 lines and achieves 85% of coverage of the
specification. A closer look shows that this coverage ranges from 94 to 100%
for the operations exercised by the testsuite. Some operations or functions were
not tested because they correspond to dead code or less interesting operations.
The TOBIAS testsuile reaches similar coverage, both globally and individually,
but there is a significant difference in the #calls column, which reveals that the
specification has been extensively tested.

7.3 Errors found

The TOBIAS testsuite finds two more errors than the manual testsuite. These
two errors appear in the add_student operation. It also revealed the error of

swap_two_studentsF through two different ways, as already explained in section
6.1.

add_student adds a student to the class. It can add it to one of the existing
groups or compute a new share of students into groups. It is specified as follows:

- there is no pre-condition: any student may be added at any time;
— the post-condition states that the student has been added to the domain of
the map, and that the output parameter is the group assigned to the student.

Manual TOBIAS
#Calls | Coverage || #Calls | Coverage
print_groups 1 V' 0 0%
add.set.students 1 N 3600 N
add_student 9 v 8208 Vi
add_group 2 Vv 1872 W
change_student 3 V) 1080 Vv
load._table 16 N 4320 N
swap_two.students 12 i 4662 N
swap-two_studentsl’ 4 N 1620 i
delete_student 5 v 4320 Vs
maximum 316 o5%| 80513 95%
mix 1 v 1440 w4
mix_better 0 0% 1440 48%
minimum 302 95%|| 75366 95%
max_nb.of_gr 2 i 1872 Vi
min.nb_of gr 0 0% 0 0%
table2partition 379 i 123974 Vi
table2table-inverse 0 0% 0 0%
size-max-gr 194 4% 65375 94%
size-min-gr 183 94%]|| 58599 94%
[Total Coverage | | 85%| I 85%]

Fig. 2. A comparison of manually generated vs automatically generated testsuite

The proposed implementation tests that there is room in one of the groups.
If all groups have reached the upper limit, add_group is called. This operation
increases the number of groups; for example, it transforms two groups of 5 stu-
dents, into one group of 4 and two groups of 3. Then, add_student assigns the
new student to one of the groups which has the lowest number of students.

add_student:student ==> gr_id
add_student(e) ==
(if size_min_gr(gr) = limit.max then add_group(};
let gid in set rng gr
be st card dom (gr :> {gid}) = size min_gr(gr)
in (gr = gr ++ {e |-> gid}; resturn(gid)))

=

L -

= I <)

U e U v U

¢ & U U

post dom gr = (dom gr~ union {e}) and RESULT = gr(e)

The TOBIAS testsuite revealed two errors in this implementation, namely
when there are no groups, and when there is a single group of b students. If no
group exists, it is not possible to add the student to the smallest group. If there
is a single group of five students, it is not possible to split it into two groups
before adding the student.

These two errors were not detected by the manual testsuite, because the
tests of add_student were applied to a configuration of at least two groups. It
is obvious that the systematic character of the tool reduces the risk to overlook
such test cases. Aciually, one of these two errors was first detected by reading
the specification after the manual testsuite had been developed. Therefore, we
expected TOBIAS to detect it also. But the second error was unknown to us
and we discovered it by executing the TOBIAS testsuite!

8 Conclusion and perspectives

8.1 Summary

This paper has presented TOBIAS, and how it can be combined with VDM Tools.
TOBIAS aims to be a simple and easy to use tool which supports and amplifies
the creative work of a test engineer. The experiments presented in this paper
show that the effort of defining groups and test schemas is similar to the effort
of producing a small manual testsuite. Of course, the ool does not help the
test engineer finding the right tests, but it provides support by performing the
repetitive tasks to produce a more exhaustive testsuite. This allows the test
engineer to concentrate on the difficult task, 1.e. define the most appropriate
test schemas. In this paper, the largest experiment shows that good results can
already be obtained using a “brute force” approach. Still, the complexity of
real applications requires a more disciplined way of testing to ensure quality. In
such cases, brute force can only be considered as a complementary approach to
increase confidence in the already performed test process.
This paper has reported on an experiment which showed that

- The testsuite generated by TOBIAS discovered more errors than a man-
ual testsuite. It also exercised some known errors in several different ways,
malking the testsuite more robust towards evolutions of the specification.

- Writing TOBIAS test schemas requires a similar effort than writing a small
manual testsuite.

8.2 VDMTools

Strictly speaking, TOBIAS does not produce “test cases” but simply “test data”.
To turn test data into a test case, you need to add the oracle. VDM Tools provides
a way to add the oracle to test data dynamically by evaluating the assertions

of the specification. The combination of both tools allows us to experiment and
better understand TOBIAS. Another interesting feature of VDM Tools is the test
coverage information, provided the tester is aware that full coverage does not
necessarily mean perfect testsuite.

Our experiments were carried out with version 3.6 of VDMTools in a Unix
environment. In this version, a large testsuite must be executed in command-
jine mode, using a “.arg” file. This file is the concatenation of the generated
test cases. In this mode, the resuli of the execution of the test cases appears on
stdout, while error messages appear on stderr. This separation of results in two
distinet streams makes it difficult to relate an error message to the execution of
a given test case. This problem is easy to fix but reveals a necessary feature for
executing large testsuites with VDMTools.

The size of the TOBIAS testsuite also led to two kinds of execution problems.
Tirst, execution time becomes a concern. Executing the brute force testsuite
takes about 90 minutes, while the manual testsuite takes only 3 minutes. In
particuiar, invariant assertions are executed a very large number of times. This
encourages to write “efficient” invariants, i.e. assertions that are optimized for
execution. Of course, such optimization may conflict with the readability of the
specification. Second, we experimented some memory problems and had to cut
our test file into files of about 1000 test cases.

Finally, we noticed an interesting problem while interpreting the error mes-
sages related to pre-conditions. In our brate force testsuite, many test cases call
operations outside their pre-condition. Such tests don’t reveal errors in the imple-
mentation and these pre-condition errors should be interpreted as “inconclusive”
verdicts. Still pre-condition errors may also reveal errors ia the implementation,
when they correspond to nested calls. For example, the add_student operation
calls add_group outside of its pre-condition when there is a single group of five
students. This makes it nocessary to carefully analyze the errors reported while
executing the testsuite, in order to distinguish inconclusive tests from failed tests.

8.3 Evolution of TOBIAS

These experiments also helped us evaluate TOBIAS, contributed to its debug-
ging and to improvements of its user interface. The biggest challenge faced by
TOBIAS is to handle combinaterial explosion which may lead to very large test-
suites. Unfolding test schemas may easily lead to millions of test cases. While
it may be interesting to have large testsuites, very large testsuites are no longer
of any help in the testing process, because they usually require untractable re-
sources to be generated and executed.

Therefore, our currené research focuses on reducing the number of auto-
matically generated test cases on the basis of information collected from the
specification. This is where the formal character of specifications helps. Informa-
tion extracted from the specification helps detecting inconclusive test cases and
may also contribute to identify sets of “equivalent” test cases. Further research
will investigate the exploitation of information from pre- and post-conditions,
ot from UML diagrams associated to the specification, to filter out inconclusive

vV ¥ VvV e

G VvV e e

¥V ¥V @

¥ ¥V ¥

¥ ¥

U U v e

v ©

test cases. Detecting equivalent test cases requires to formulate test hypotheses
on the parameters of operations. Here again, using a formal and executable spec-
ification language like VDM to express these hypotheses is of definite interest.

Another major challenge of using TOBIAS corresponds to the test data se-
lection. With the current version of TOBIAS, test data are selected "manually”
by the test engineer. This may lead to two kinds of problems:

— the test engineer may overlook an interesting value, so the $est suite may
miss some kinds of errors;

— he may also select redundant values, resuliing in a larger but not more useful
test suite.

Therefore, it makes sense to combine TOBIAS with test data generation tools
such as those based on the ideas of Dick and Faivre [4]. In the coming months,
we expect to establish a link with the CASTING tool [11].

Today, TOBIAS already provides an effective solution for the generation
of large test suites. In further work, we expect to take advantage of formal
techniques Lo generate more efficient and pertinent test suites,

References

1. B. Beizer. Software Testing Technigues. Van Nostrand Reinhold, 1990.

2. P. Bontron, O. Maury, L. du Bousquet, Y. Ledru, C. Oriat, and M.-L.. Potet. TO-
BIAS : un environnement pour la création d’objectifs de tests & partir de schémas
de tests. In J.C. Rault, editor, [CSSEA 2001, decembre 2001.

3. E. Brinksma. A theory for derivation of tests. In S. Aggrawal and K. Sabnani,
editors, Protocol Specification, Testing and Verification VI North Holland, 1988,

4. I. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications . In FME’93: Industriel-Strength Formal Methods.
LNCS 760, Springer-Verlag : 268-284, April 1993,

5. L. du Bousquet, H. Martin, and J.-M. Jézéquel. Conformance Testing from UML
specificationd, Experience Report. In Gesellschaft fiir Informatik (G1}, editor, p-
UML workshop, Lecture Notes in Informatics (LNI), volume P-7, pages 43--56,
Torento, Canada, 2001.

6. John Fitzgerald and Peter Gorm Larsen. Modelling Systems - Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998, ISBN 0-521-62348-0.

7. The VDM Tool Group. VDM-3L. Toolbox User Manual. Technical report, IFAD,
October 2000. fip://fip.ifad.dk/pub/vdmtools/doc/userman_letter.pdf.

8. T. Jéron and P. Morel. Test Generation Derived from Model-checking. In Compuler
Atided Verification (CAV). LNCS 1633, Springer-Verlag, 1999,

9. C. B. Jones. Systematic Software Development Using VDM (Second Edition).
Prentice-Hall, L.ondon, 1990.

10. J. Tretmans. A formal approach to conformance testing. PhD thesis, University of
Twente, Enschede, The Netherlands, 1992.

11. L. Van Aertryck, M. Benveniste, and). Le Métayer. Casting: A formally based
software test generation method. In The st Ini. Conf. on Formal Engincering
Methods, IBEE, [CFEM’97, Hiroshima, 1997.

