tdveobeLUodeeeecs

P

vVOouUuLUYuUBbLOODLVY

On the Design of a Periodic Table of VDM Specifications

IN. Oliveira ™

Dep. Informdtica, Universidade do Minho, Braga, Portugal
and
Sidereus S.A., Porto, Portugal

Abstract. This paper describes work in re-structuring a corpus of standard al-
gorithmic knowledge written in VDM notation. Algorithms are classified and
catalogued in a tabular structure according to their formal specification, once this
is subject to a factorization which identifies the underlying polynomial structure
and inductive behaviour.

Each polynomial gives rise to a column in the table and captures a particular “ef-
ficiency” pattern. Rows in the table correspond to classes of problems, e.g. sort,
count ete. “Holes” in the table correspond te (ofien “new™) algorithmis and can
be {filled in by inter-combining and shifting around she elementary components of
the available specifications. These are identified by factorization techniques using
the relational hylomorphism calculus,

Things are different from each other, and each can be re-
duced to very small parts of itself. (Ancient knowledge)

1 Introduction

Formal modelling is a means of capturing and reasoning about the knowledge embod-
ied in the solution to a problem. If performed at the right level of abstraction, using a
mathematically tractable notation, it is a significant step towards reliable software de-
scription able to endure arbitrary technology change. Still the question arises at abstract
level: how much is “new” in a fresh model when compared to others already available?
Put in other words: where is the borderline between invention and sheer routine-work
in formal modelling?

Domain analysts try to answer these questions by structuring specification reposito-
ries according to problem arcas. Still it is often the case that the mode! one is looking for
can only be found in another problem area, once stripped from its domain-specific ter-
minology. There is a need to investigate alternative internal structures for formal model
repositories able to unveil their mathematicat essence and spot model “intersection™ in
a systematic way.

This paper describes work which, in this spirit, tries to re-structure a corpus of
standard algorithmic knowledge written in VDM notation. Algorithms are c¢lassified
and catalogued in a tabular structure according to their formal specification, once this is
subject to a transformation which identifies the underlying inductive (recursive) pattern.

* Dep. Informdtica, Universidade do Minho, Campus de Gualtar, 4700 Braga, Portugal. EMAIL:
jnc@di.uminho.pt.

2 Motivation

Algorithmics is a vast body of knowledge which is hard to grasp because it is very
unstructured. Teaching algorithm design today can somehow be compared to teaching
chemistry before Mendeleyev published his periodic table in 1869, whereupon cach
element eventually found “jts place” in a systematic way.

At the industrial level, the formal methods practitioner is often frustrated by the
difficulty in expressing the commonalities of specs which “look alike”. As Mendeleyev
and others did in the past, in their own field of research, software theorists should invest
in factorization methods able to spot elementary, yet formally meaningful abstract al-
gorithmic elements which can combined in several (possibly novel) ways to build more
and more elaborate specs.

This concern can be framed in today’s trend of component-oriented programming
and software reuse. But there is something else to consider: for the meaning of a com-
ponent aggregation to be predicted there is a need for calculation. This requires a formal
notation and calculus. As a motivation, let us consider another field of knowledge where
factorization plays a central rle — that of elementary number theory. -

Factorization versus calculation

“Brute force” arithmetic calculations such as, for instance, % == (,0545454 ... are in-
accurate and error-prone. At school one is taught an alternative, accurate way, in which
one “understands” the numbers first, by what is known as prime factorization,

756 =22 x 3¥ % 7
799 = 2% % 3% x 11

and then performs the calculation {by what might be called “prime factor fusion):

756 22538 % 7
792 93 x32x 11
=92 %23 x3¥3 x3 %t xTx117!
=27 w3 x 7w 117!
21
22

A famous result of elementary number theory, the Fundamental Theorem of Arith-
metics, underlies this method: every integer greater than I can be written in the form
prPh? .. ppt where ng > 0 and the p;'s are distinct primes.

Is there a similar fundamental theorem applicable to software code factorization?
What is the “prime number” equivalent in the software field? We will address these
topics in the sequel under the adoption of a formal notation for software specification
— the ISO/IEC 13817-1 standard (vulg. VDM-5L}) [8].

-
=

b v YUY

=

vVooLuuvuvuvovwy

3 Algorithm and data specification

It is widely accepted, since the structured programming discipline of the 1970s, that
data precede algorithms in software construction. For instance, the author of the fol-
lowing explicit specification [9] of the insertion sort algorithm surely knows not only
how to inspect a finite list,

‘doSortivs
doScrti(d
AL :
vl els' let: sorted = doSort (ul l) inh
i nser Sorted (bci 1, sorted)

but also how to build one:

znsertsorted 1nt . seq of 1nt = seq of 1nt

lnsertSorted(x,l} == L
cases true f-_~“-'.-'
IS E R N

S (i i RE L) = f) 7L,
Cothers [0 o => fhd 1] 7 insertSorted{i,tl-l}):

end -

However, it is less obvious what kind of data-structure has inspired the specifier of
another sorting algorithm,

mérgesdrb-: ‘sed BE 1nt = seq of 1nt
mergeSort. (1) ' . -
cases a
Co TS 1 S
R T-) RS- 1 K
others —> let’ ll 12 in set {1} S
. TR o [c] st abs (len 11~ len 12) < 2
inlet o1l = mergeSort C (11}, :
R 1_r = mergeSort (12).
R lmerge (1 1,1 r)

end; .-

which is doubly recursive despite the fact that the data it manipulates is linearly struc-
tured. If such a data structure exists, it should be hidden in the algorithm itself.

Recent research in the mathematics of programming has provided further insight
into the rdle — cither real or virfual — of data structuring in program construction {3,
2]. A large database file stored on disk is surely a visible, real data structure. However,
the binary tree which silently controls mergeSort’s double recursion is only evident to
the software formalist who knows that real data structures may exist at specification
level which disappear (i.e. become virtual) throughout the process of software refine-
ment by calculation.

In the remainder of this paper we will not only see how to uncover such invisible
data-structures but will also appreciate their réle in algorithm factorization, while pro-
viding a prime criterion for algorithin classification. First of all, we need to identify the
class of algorithms which will be covered by the appreach.

3.1 The divide-and-conquer generic algorithmic pattern

Computing has to do with problem solving. The general strategy of approaching a com-
plex problem by a priori splitting it into a finite number of (less complex) sub-problems
which are solved independently is inherently assoclated to the analytical power of the
homan brain:

i divide (analysis) O }

i Problem ;. :-. Stib-problems -
solve sub-problems

- Solution .) - Subssolutions

; : L combine (synthesis) e s

The rule is to iterate this scheme until the sub-problems are “mind-sized”. Pattern-
matching and casc-analysis (such as in insertSorted and mergeSort above) are
particular instances of this strategy.

A more expressive situation arises wherever some of the sub-problems, though
“smaller”, share the structure of the original problem itseif. One is lead to what has be-
come known as the divide and conguer generic algorithmic structure. Let A be the class
of problems to solve and let F A denote the particular organization of sub-problems of
A inferred by the problem analyst. The divide step can be expressed by arrow

A divide ~EA
Let B denote the class of problem solutions. The dual of divide is the congquer step,
which consists of generating the solution once sofutions to all the sub-problems have
been found:

divide
A »F A
solvel
B conquer

By knowing that the main problem and its sub-problemns share the same “type”, the
overall solve step one is looking for can be structurally “reused” in solving the sub-
problems themselves:

divide

A————FA
solve l F zolve

B conquer FB
The notation “F solve™ captures the fact that solve is reused in a way driven by the
F-structure itself — the inductive step. As we will see later on, this notation is not only
suggestive but also fully justifiable on theoretical grounds.

v g4y

ﬁg’

zg’
gg,
E%)
;%,
E%i

A well-known instance of divide and conguer arises in compiler design, where A
is the particular language to be compiled, B stands for binary code, the divide-step is
called parse and the conquer-step is called code-generation. In this case, the four arrows
in the diagram can be regarded as mathematical functions. This is not the general case,
however.

4 Algorithm specifications as binary relations

The following VDM-SL operation specification

TpEEInot empty (stack)
" postistacki="pop{stack)and r = to

pstatk)
builds up on pop and top, two well-known functions of the ubiquitous stack abstract
datatype. Tt itlustrates a common procedure in specifying (deterministic) state transac-
tions on top of functional kbraries. In general, given some local state db, such transac-
tions are expressed as “pairs of functions™

@ Tl i bt 0 =i(a,db)
M op

1

One of these (i) delivers an output and the other () performs a state-transition. In gen-
eral, 7 and p will be partial functions, as is the case of pop and top above. This requires
some kind of ordered mathematical structure at the semantics level. The adeption of bi-
nary relations, which has a long tradition in the pre/post constructive specification style
[13, 14], is advantageous: a binary relation is a single mathematical device able to ex-
press

total/partial functions

predicates, datatype invariants and loop-invariants
orders and inductive siructures

nondeterminism

vagueness or under-specification.

The following section sets up some basic terminology about binary relations, before
one can address the issue of relational factorization. For a thorough presentation of the
whole relational calculus the reader is referred to [5, 2].

5 Rudiments of the relational calculus

Let B <2 4 denote a binary relation on datatypes A (source) and B (target). The
underlying partial order on relations will be written R ¢ 8, meaning that S is either
more defined or less deterministic than R. Equality on relations can be established by
C-antisymmetry; R= 5= RC SASCRH.

Relations can be combined by three basic operators: composition (R - 5), converse
(R®) and meet (RNS). Meet corresponds to set-theoretical intersection and composition
is defined in the usual way: b(R - S)c holds wherever there exists some @ € A such that
aScAbRa. Bverywhere T = R- S holds, the replacement of T by B- S will be referred

to as a “factorization” and that of R - S by T as “fusion”. Every relation B =< iz A
admits two trivial factorizations, R = R-ids and R = idg- R where, for every X, tdx
is the identity relation mapping every value in X onto itself. Sorne standard terminology

arises from this relation: a (endojrelation A . A will be referred to as reflexive iff
ida C R holds and as coreflexive iff R C id4 holds. As a rule, subscripts are dropped
wherever types are implicit or easy to infer.

The converse of R is the relation R° such that a(R°)b = bRa. Converse is of
paramount importance in establishing the taxonomy of binary relations. Let us first
define two derived operators, kernel

M ker R R°- R
and image (its dual)
2) img R ker (R°)

An alternative to (2) is to define img R = R - R°, since converse commutes with
composition, (R - §)° = S° - R® and is involutive: (R°)° = R.
Kernel and image lead to the following taxonomy: a relation Tt s said to be

— entire (or total) iff its kernel is reflexive;
_ gimple (or functional) iff its image is coreflexive |;
_ a function, iff it is both simple and entire.

Functions will be denoted by lowercase letters (f, g, etc.} and are such that f € R
implies that R is entire and R G f implies that R is simple. In general, larger than
entire means entire and smaller than simple means simple.

The relational operators introduced so far enjoy a vast number of properties which
are omitted at this point for the sake of brevity (see {5} for a thorough account). Instead,
we will focus on their expressive power. For instance, coreflexives are fragments of
the identity relation and can be used to model predicates: the “meaning” of a predicate

bool <t A is a coreflexive relation [¢] such that afpla = da thatis, the relation
that maps every a which satisfics ¢ onto itself. In this way, predicate conjunction boils

! simplicity is the dual of entireness. Simple refations are also called partial functions, recall
e.g. top and pop ahove.

=)
2
=]
=
D
Eg
-
2

down to coreflexive composition: [¢ A 9] = [4] - [¢/]. In this context, the following
VDM-SL implict specification of sorring {91

: ImplSor;(l. eq f nb)‘r seq of ﬁnt
post IsOrdered{r) and IsPermuLatlon(r,l),;j-

abbreviates to ImplSort & 1sOrdered: [TsPermutation], where predicate 1sPex-
mutation

. (elems 11 anién elems 12)'
SN seE lnds 11 & LAY =ed
“'n set lnds l2 & 12(1)'= &

forall
oy ca:d {1

is embedded as a corcﬂexive. Which one? It can be checked that it coincides with
ker seq2bag, where seq2bag (“convert a sequence into a bag™) is the function which
foses information about the ordering of a sequence:

‘seglbagi.seq ‘ot 1nt > map lnt to natl

seq2bag(l) == - R
He }—> card {01)04 in set 1nds l & 1{1) =g}
I @in set élems 1 .} ’

So one might have written, in the first place,

ImplSort & IsOrdered - (ker seq2bag)

in a “‘pointfree” specification style which is fully based on the relation algebra and thus
amenable to reasoning and calculation 2. For instance, the fact that IsPermutation
defines an equivalence relation does not require an explicit logical proof anymore: it
suffices to know that the kernel of a total function always is reflexive, symmetric and
transitive

6 A relational approach to divide-and-conquer

The divide-and-conguer scheme introduced in section 3.1 can be formalized in the
above relational framework by regarding the arrows in the diagram as binary relations,

3) A—S>FA

X e

B *9“;5“‘ FB

* The move from the pointwise level (involving operators as well as variable symbols, logical
connectives, quantifiers, efc.) to the pointfree one is compared elsewhere [19] to the Laplace
transformation. The former is more intuitive but harder to reason about, the latter is less de-
scriptive but more algebraic and compact. As in traditional mathermatics, there is room for both
in formal specification.

* A relation R is symmetric iff R = R° and transitive iff R+ R C R.

where § is the divide relation, R the conquer one and X the specification of interest.
The equation implicit in diagram (3} is of the form

@) X=R-(FX)-§

and is known as a hylo equation or hylo specification 4, Prior 1o discussing solu-
tions for (4) we need to be more specific about the meaning of F in the relational
framework. Symbol F is overloaded: F A means a (parametric) datatype, e.g. PA (set

.) . FX . .
of A in VDM-SL), while F X means a relation F B <——F A given some relation

B <2 A . Forinstance, P.X will relate every subset s of A to the following subset

of B: {b € B|3Jda € s.bXa} [5]. Should X be a function f, Pf can be identified
with the set-comprehension { f a | a € s}. Technically, we will say that is a relator
and assume a number of properties, namely that F is monotone and commutes with
composition, converse and the identity:

(5) F(R-S)=(FR)-(FS)
(6) F(R®) = (FR)
(D Fid == 1d

Also note the following terminology: every relation of type 4 <A will be re-

ferred to as an F-algebra and its converse A LN FA as an F-coalgebra. A will
he mentioned as the carrier of both the algebra and the coalgebra. In the divide-and-
conquer scheme (3), the divide relation is always a coalgebra and the conquer relation
is always an algebra.

Now we turn to the discussion of how to solve (4). In particular, we look for a least
solution X R - (F X) - S, if it exists. The answer to this concern is inherently related
1o the factorization of the least solution itself. Because F commutes with composition,
one can discuss such a factorization. Suppose it makes sense to write X = X - X, for
some intermediate datatype C which is the target of X, and the source of X». Then (3)

can be expanded in the following diagram, for some suitable F-algebra C' L FC

(8) A—32>F4

Xll lFX]

C~7FC

T
Xzi lsz

B“E—R"FB

A remarkable theorem of the relational calculus establishes conditions on S, R and
7T for the corresponding factorization to make sense and the least solution to be express-
ible in such a way. For economy of presentation we cannot deal with the full details of

4 Hylo (from “vAoc”) means “matter”. This choice of terminclogy purports the idea that every

piece of algorithiic knowledge (matter) can be specified by a diagram/equation of this kind
-— see [3,2] for details.

g 4

¥ 4]

U8 EBUYUBLLBLOLOVIY VYD IYYDLDYUIDYDUVULUY

this result, which can be found in the literature [5, 3, 2}, and will address it in a fairly
intuitive way.

First of all, S is required to be “well-founded” . This ensures that the “size” of
a sub-problem generated by S s strictly smaller than its source, i.e. termination. Sec-
ondly, T is required 1o be bijective ® over the datatype which is inductively defined by
F, thatis, ¢ = pF. If it exists, uF is precisely the type one “defines” by writing domain
equations in VDM-SL such as, for instance, in the following specification of “leaf-trees”
of integers:

S LT¥ée = Leaf | Node § 7

coLedt oty owalder ARt s L e T
Clefri LTree wighty LTree sy .. -0

NBGE:
In this case, we are defining datatype LTree as the least fixpoint of

©) FX % ant | XX

(Note the use of “*” abbreviating the record structure defined by Node.) However, can
we rely on {9) as defining a relator?

At this point it is preferable to abandon VDM-SL-syntax and resort to the standard

“polynomial” notation for datatypes. In this notation (9) will be written as F.X &ef

int + X2, where X? means the same as X x X and X is the standard binary relator
associated to Cartesian product:

(10) (b, d)(R x S){a,c) = (bRa) A (dSc)

The companion sum relator (+) works over disjoint sums A+ B = {{1a{a € A} U
{i2b|b € B} where i) are iy arbitrary (but consistent) disjoint injections, such as those
implicit in Leaf and Node in the VDM-SL fragment above. Its definition

(11) R+ 8 =iy R,iy- 5]
is based on a basic relational combinator which captures case analysis,

¢[R, S](i1a) = cRa
c[R, S)(i1 b) = cSb

il

(12}

il

¢f. diagram
i1

A+B—2 B

R lER’S] s

A

3 Note the quotes, which hide some technical subtieties. What needs to be wetl-founded is the
composition Cg -5°, where €F is the so-called F-membership relation associated to relator R.
For the (many) technical details omitted here the reader is referred to e.g. 15, 21

8 A relation is bijective if it is an injective and surjective function. A relation R is injective iff
R® is simple and surjective iff R° is entire.

Using this notation, the two LTree constructors mk_Leaf and mk Node can be “pack-
aged” together in a single algebra:

juk_Leaf,mk Neodej
LTree <-=————1int 4+ LTree X LTree

According to the semantics of VDM-SL, this algebra is in fact a bijection (isomorphism)
because LT ree is a least fixpoint. In general, a feast fixpoint solution X.F X is given
by exhibiting the cortesponding isomorphism, often baptized “in

(13) s < F(uF)

Another rcmarkab!e fact concerns this algebra in and states that, given any other

algebra 3 <BoF B, there is a unique X satisfying X +in = R - (F X}. In order to
express this uniqueness, it is common practice to denote such a single solutien by (R].
This can be read (according to the local jargon) as the “inductive extension of R, “fold
R” or “catamorphism of R”. Since R fully determines {R]), it sometimes is referred
to as the “gene” of (R}. For instance, the following VDM-SL fragment contains two
functions, one adding up all leaves of a leaf-tree and the other counting them:

“addLTrée: LTree —> int
addLTree(t) ==
’ cases t .- S
mk Leaf(1} ~3 B
_ . mk Node(Ll t?) > addITree(Ll} + addLTree(tZ)
end, S :

countLTtee uTree => 1nt
_coun<ree{ LR
casés t ot
mk Ledf (~) =% 1 ; ’ :
- omk Vode[tl £2) -> countLTree(tl) + counLLTree(t2)
. end; ; o

Converted to the () notation, these functions abbreviate to {{id, +])) and {{1, -+]], re-

spectively, where 1 denotes the constant function Az.1. By focussing on the geneuc
material of specs only, this notation keeps track of what is really important in a speci-
fication. All the rest is repetitive syntax implicit in the particular F which underlies the
{i-]} construction.

Such a syntax is, in fact, what a VDM-SL practitioner will inevitably “cut and paste”
from spec to spec. The outcome can be surprising: replace id and + in addLTree by
mk_Leaf and mk_Node, respectively. The recursive function thus defined is nothing but
the identity function on LTree and instantiates the so-called reflection property,

(14) {in) = id

a consequence of the uniqueness of (inj.

»
=
=]
=)
-
>
D
>
>
2
]
]

e e

Returning to diagram (8), it should be clear that the replacement of 7" by in turns
Xo into (B}. Moreover, (.5°)) exists and its converse bears the same type as X7;

A< Fg

USODol lFGSoDn

iF < FuF

(]Ri)l lFﬂRD

B<——FB

The result we are looking for — hereafter mentioned as the hylo-factorization
theorem — establishes that, under the gbove conditions, one has

(15) pX (R -FX.8)=(R])-(5°)°
or, renaming .5 to §° and simplifying:
(16) uX (R-FX.5%) = (R)-(S)°

This theorem provides another perspective on the divide-and-conquer scheme (3):
what really matters is the particular choice of pattern (F) for sub-problem organization,
which induces inductive type iF. This can be left implicit or be made explicit by hylo-
factorization. In this case, an explicit data-structure is built which saves the outcome of
a “one go” divide step (|S])° and passes it on to the conguer step (R) for processing.
Compilers are examples of programs which work in this way, because the intermediate
data-structure (abstract syntax tree) is traversed several times, and so making it explicit
is cost-effective. In general, however, specifiers or programmers fend to “fuse” things
very carly in design, thus virtualizing this structure — if they ever became aware of its
existence.

7 Virtnal data structuring

Let us apply the above result to mergesort. F, R and S will be inferred by following
(in a rather lightweight manner) the algorithm presented in [11], which covers case-
based functional specifications such as mergeSort. For reasons to be explained shortly,
case {] ->1 will be removed from the specification. Two cases remain, meaning that
F is a sum of two summands. Termination is ensured by case [} -» 1, in which
the singleton list function singl = Ae.[e] occurs. In the other case, 2 binary operation

{imerge) is applied to the outcome of two recursive calls. Altogether, {4) instantiates
to

mergeSort = [singl, Imerge - (mergeSort x mergeSort)] - S
= { absorptionlaw (R, S) (T +U) = [R-T,5 - U] £ 15] }

mergeSort = [singl, lmerge] - (id + mergeSort x mergeSort) - §

So R = {singl,lmerge], Ff = id + f x fand FX = int + X x X This unveils
LTree == pX.int+ X x X as the virtual datatype underlying the operation of merge-
sort. Finally, coalgebra S can be inferred by extracting “what remains’™:

ie) L
’ Gthers wwlet LI L
:- o itk (1“12) :

1o ler 12y <2 dn

. .enci,

Rather more elegant is the following alternative definition of .S,

(17 S = [singl, pconc}’

which uses converse and “partial concatenation” ”:

“prone 1 sey of int & ‘seq’ of :mt e seq of :.nt
Cpoone (11, 12) == 117732 . [
pre abs (leén 11—~ len 12} .<__2 H el

S either extracts the sole clement of a singleton input list, or splits the input list into
two sublists of equal (or almost equal) length. This means that (.5°)° builds an (almost)
balanced tree whose leaves are the items to sort, and this is the tree which (R{) visits to
produce the output list. This will be sorted thanks to the efforts of Imerge:

1merge seq of':mt * seq of :mt -> seu of mt e
1rnerge(}.l 12 : . S
- lcases WKL (11,12) ;
SomELIUHT, 1), mk (lr[]} .—> 1r_ L -) : ;
- others ‘;- o GOSS L hd ll <= hd 12 then Thd 11] o }.merge{tl 11, 12}
R Joelse [hd 12] ”'lmerge(l‘,' vl 123 .

L e‘nd 7

In summary, the factorization of mergeSort helps in understanding the “Equal-size,
Easy Split, Hard Join” classification of the algorithm [10].

The inspection of the intermediate type of a recursive definition can also be of help
in debugging. Suppose one is given the following (simpler) version of the algorithm:

_mergesc"t H seq of 1nt
mergescrt (l))

'st—:-q.,o_f ing

Following the same procedure as above, one infers F X = 1+ X? as the underlying
pattern of recursion, where 1 is the one-element datatype inhabited by nil. However,

7 The use of converse as a specification device is thoroughly dealt with in reference {17].

e

P PV UV UV O L U

v U UV Y W

% u LB U e

there is something wrong: ©.X.1 + X is a “shape tree” where there is no room to store
the integers to sort! In fact, the algorithm only terminates for 1 = {], as the underlying
coalgebra S = [[],”] is not “well-founded™.

This leads us back to the reason why we didn’t consider case {] ->1 above: it
“does not belong” to the algorithm because coalgebra (17) stops at the singletons and
never reaches [1.Socase [] ~>1 should be treated outside the algorithm, as in [1] (but
not in [10]). In summary, mergeSort should be defined over type constructor seql of
rather than segof.

Since the pioneering work of Darlington {7], sorting has remained fertile ground for
algorithm classification ® in which factorization plays its rdle. For instance, the main
distinction between mergeSort and quickSort

guiengert iisey’

SE3gEq . of AAnt
Cquick8ort el
easEs L U
{15304y, 0 : : : o
”[x] - = quxckSort ({y] ¥ in set elems 1 ; y < x]) " {x]" G
: --_ ke quzckSort (Iy iy ln set elems 1k ¥ > x;) I ’
end o :) . . h

resides in the virtual structure itself, which is a binary search tree (1.X.1 + int x X7}
in

quickSort = ([}, inord}) - ([{], pinord])®

where

Cirord: ink] T (seq of lﬂt * seq of 1nt} e seq of int. -
__1noﬂd(x mk (l r))' 1 {x} T :

: plnﬂrd 1nt * (seq of 1nt * seq of 1nt) - seq of 1nt'_s'f N
pinord (k,mk (1;r)) == :nord(y,mk (1)) (B SR
'pre forall y in set elems 1 & y < and’ forall y in set elems kYo ox; o

In sumimary, guickSort is nothing but binary-tree in-order traversal (conquer) following
the converse of a partial in-order traversal (divide;. The latter does the hard job of
ensuring that the intermediate tree is bi-ordered. Thus quickSert’s classification in [10]:
“Equal-size, Hard Split, Easy Join”.

8 Towards a “periodic” table of algorithms

Table 1 shows a sample of a repository of VDM-SL specifications which have been
factored and classified for teaching purposes. Columns represent recursion patterns and
rows the types of the specifications being defined . One can see that, for instance,

% Sec e.g. [10,5, 11 and the references there, Reference [5] includes the pointfree calculation of
some sorting algorithms.

¥ No special effort has been put on parameterization and genericity because VDM-SL does not
fully support parametric or generic types. There is much room: for improvement in this respect,

fibonnaci and doubleFactorial are in the same column as mergeSort, all of them
sharing LTree as the virtual intermediate datatype. Because of the reflection law (14),
virtual datatypes may also occur as real (input/output) ones, as e.g. BTree in pre/in/
postOrder.

The recursion pattern of the rightmost column is not dealt with in this paper. ETree
(“hierarchical tree™) is the interniediate datatype of two problems, explode (bill of ma-
terials} and rar (file system archiving utility) which are shown in [18] to be “abstracily
identical”.

Table 1 is not yet the one containing the most elementary “specification master”.
Factorization reveals that it is meaningless to go smaller than the algebra and coalgebra
implicit in the “hylo-formula” {R]) - ({S°)° into which every entry in Table 1 can be
decomposed. So we collect such specification elements into another table — Table 2
below — under the convention that every S° in the table means that S is a coalgebra
(or an atgebra otherwise).

Table 2 is just a prototype of what a comprehensive tabulation of specification ele-
ments should eventually be '°. A trained software formalist will not have difficulties in
filling in the missing elements, eventualtly entailing the addition of new columns (such
as e.g. rose trees [13). However smali, this table already contains what seems to be es-
sential in solving a problem by computer: a formal classification of divide and conquer
recipes.

9 Discussion

The column in Table 1 corresponding to the intermediate type of finite lists (n.X. 1+ A x
X) includes many standard VDM-SL primitive operators and is more crowded than oth-
ers. The reason for this is two-fold. First of all, many mathematical operators (e.g. the
factorial function) are defined by primitive recursion over pX.1 + X, the natural num-
bers. However, primitive recursion falls in a special class of recursion schemata, known
as paramorphisms ''. A standard result [16] establishes that every F-paramorphism can
be converted into a G-hylomorphism, where GX = F(pF x X). For FX = 1 + X
(natural numbers) one has GX = 1 + (nat x X), i.e. finite lists of natural numbers.
This explains why factorial (n!) and square (n?) have been archived in this column, the
former as a hylo multiplying {the list of) the n-first natural numbers and the latter as the
one which adds the n-first odd-numbers.

A second reason has to do with the fact that finite lists mediate almost all standard
definitions in VDM-SL involving finite sets, finite mappings and (of course) finite lists.
The following instance of the usual inductive pattern underlying set-based specification

for instance in expressing sorting parametrically on the underlying ordering, in letting an ar-
bitrary moneid to replace all occurrences of associative binary operators with an unit element,
and so on.

10 The remarks on lack of genericity made in footnote 9 apply also to this table.

1 paramorphisms generalize primitive recursion [15] to arbitrary F. For instance, the semantics
of the popular we (“word count™) program is a list-paramorphism [19].

Table 1. Sample of & VDM-SL specification repository

FX 1+ X|14+AxX A+ X? 1+ Ax X*(BxA+BxX)"
uF nat | seqof A LTree BTree HTree
I — Qut Specifications
nat — nat square fibonnaci
factorial | double Factorial
nat — set of natl inseg
seqof A — seqof A mj;géi;rt mergeSort guickSort
seqof A — bool ordSeq
seqof A-—-setof 4 elems
seqof A — set of natl iruds
seqof A —Bagof A seq2bag
seqof A — nat len
LTree —» bool balLTree’
LTree — nat depthLTree
, addLTree
LTree—int count LT ree
LTree — seqof A tips
LTree — LTree invLTree
ordBTree
BTree — bool bal BTree
BTree - nat depthBTree
preOrder
BTree — segof A inOrder
postOrder
BTree — seqof segof A traces
BTree - BTree tnuvBTree
set of A — nat card
setof A — segof A Set2seq
set of bool ~+ bool g
setofsetof A — setof A dunion
mapAto B — setof A dom
map AtoB — setof B ran
set of (mapAtoB)—mapAto B merge
Pl'ree — Bagof A explode
F§ — map Stringto A tar
(Other) hanoi

Notes: insertSort corresponds to doSort in the main text. Bag of A abbreviates mapAto nati. For the PTree (production tree)
and I°S (file system} datatypes see [18]. hanot refers to the well-known Towers of Hanoi problem.

Table 2. Sample of Periodic Table of VDM specification elements

FX 1+ X T+AxX A+ X? T+ Axx? |[(BxA+BxX)
uF nat seqof A LTree BTree HTree
Carrier . F-(co)algebras
G V! [E, V]
boc! .- 74 Al
0, +] fid, +]
odds® id, ® 1, bnaul]
nat ng b"LLC] [-1", *] [[-1“, +{ i[g, bﬁ‘dd]
nats® fibd®
nat * nat df acd®
(hoonsl | fomal) | (o
seqof A ({], rcons] {singl, pconc] m’ rord)
L] [singl, Imerge] [—ﬁ: Zsord]
in
LTree in - (id -+ sw)
, Cin
BTree in - (id + id X sw)
HTree n
mns
PITLS
setof A 19,4 [Az.{z}, U 1, bputs}
ins - (id 4 w1 % id)
ins - (id + 75 % id)
ing
map Ato B pins
[{r-}, munion]
PTree exsplit®
Bagof A exjoin
FileS tsplit®
map Stringto A tjoin
(Other) hsplit®

uctive type, in denotes the relevant isomorphism (13).
are the 1wo Cartesian product projections. provd and
. respectively. badd, bl and bputs abbreviate
£ hanoi. Details about the entries in the

Notes: Some of the (co)algehras above are explained in the main text. For every ind
sue is the successor function, swie, b} = (b, o} is the swap function and 7y, w2
peord are the obvious variants of tnord. ins and pins abbreviate [0, puts] and (B, sput]
(+) + (3 x (4+)), (#) - (id % () and puts - (¢d x U}, respectively. haplit is the coalgebra o
HTree column can be found in [18). Other VDM-SL functions follow:

A seq of -_@B'_-:-> seq of ‘@A

congiBA] 1+ @
ey S5

gons (e

CrednsEAT 3
reons{e,1) !

CBh Tk ey of @A <> seqOf GA

o ':_'..“at ;
‘odds(n) =R

i1, h:_—_>_._';n}.c_{.2'*n-_'1}n'—_l__)., endy

Cdfacd: _'n'at.

afacdn/m

“mwlet k= (e div 2o in if memothea n-glsemki(m

¥ mat b nak 1’ (sat * naty *(nat * mat)) o

»:fnr'k) SR (EEL M)G %

8

illustrates this:

ﬁlf*-ééfd§@ajj51)

and

e} unzon 3 :
et 35

pre no& e ln

Finite mapping recursion is performed by set-induction over the argument’s domain and
so also falls in this column.

However, it is apparent that the same functions could have been defined in other
ways, i.e. under different factorizations. For instance, there would be no problem in
redefining card by double recursion over ETree because — one might say — addition
is commutative and associative. The same can be said about the specification which
follows

fSétZSéQf@Aé set o; @A m> seq 55 @A
SetZSGq(s -—' ; R i
. .cases §3 el
RO SR :
EBCR R unlon s' ~> cans(@A](e Set2squ@A](=))
end,~__. : SR :

which is the converse of elems — in fact a refation and not a function. The guestion
arises: when does a hylo-equation define a function?

Reference [17] presents conditions for the least solution to a hylo-equation to be
simple: a simple relation T can be expressed as a hylo (f]) - (S)° provided that not
only §° meets the standard requirements on termination, but also that T - 5§ C f - FT
and domT = g S hold 2.

It can be checked that all standard linear (i.e. “list-based”) specifications of set or
mapping functions satisfy thesc requirements, but there is room for other F to support
the same definition, in particular in presence of commutative and associative operators.
This enables us to start and filj the “holes” in Table 1 with alternative specifications,
for instance based on BTree or LTree. In terms of algorithmic knowledge this is good
news: we are “discovering new algorithms” '*. On formal specification grounds, how-
ever, this raises an old question — what is a {functional) specification? — and assoct-
ated discussion on model/property-orientation in formal methods [14]. Isn’t polytypic

2 dom T and ransS abbreviate ker T 1 id and img S M id, respectively.

13 Back to the analogy which the title of this paper purports, recall that chemists only began
to appreciate Mendeleyev’s table when the discovery of elements predicted by the table took
place.

i.e. F-independent [12] specification a possible compromise? A proper answer to this
question falls outside the scope of the current paper.

10 Related work

The approach presented in this paper underlies the way algorithmics are taught at
Minho, based on HASKELL in the first years and on VDM-SL in the final ones. A generic
visual programming tool has been developed [6] in GENERIC HASKELL which per-
forms hylo-factorization according to the algorithm of [11]. The prospect of building a
web/hypertext interface for the whole repository, aliowing for navigation, composition
and animation of the available specification elements is being considered.

Algorithm classification is related to polytypical programming [12]. By grouping
rows in Table 1 which perform the same “abstract task” (e.g. summing, counting, col-
lecting, sorting, etc) and generalizing the relevant “genetic material” one would be able
to identify the generic functions of libraries such as, for instance, POLYP.

Hylo-decomposition and calculation is a subject of active research in the discipline
of constructive algorithmics [16,11,5,18,2,17]. The main motivation is to develop
program optimization techniques by “fusion” and “deforestation™. By contrast, 119]
and the current paper point towards the opposite direction of “reforestation”, in the
context of program analysis, reverse engineering and program understanding. One of
the concerns of the PURE project (“Program Undesstanding by Reverse Engineering”)
is to scale up this approach from functions and relations to processes and software
components [4], bearing in mind its industrial application to legacy software.

Acknowledgements

The author wishes to thank Alcino Cunha and Shin-Cheng Mu for stimulating discus-
sions on the topics addressed in this paper. Special thanks go to Lufs Barbosa for his
comments on an earlier draft of this paper. The use of VDMTools ® under a Free
Academic Site License provided by IFAD is gratefully acknowledged.

The rescarch described in this paper was carried out at the CCTC R&D Center
{project PURE).

References

1. Lex Augusteijn, Sorting morphisms. In 5.D. Swierstra, PR. Henriques, and J.N. Oliveira,
editors, Advanced Functional Programming, Third Imernational School, Braga, Portugal,
September 12-19, 1998, Revised Lectures, volume 1608 of Lecture Notes in Computer Sci-
ence, pages 1-27. Springer, 1999.

2. R. C. Backhouse. Fixed peint calcutus, 2000. Summer School and Workshop on Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction, Lincoln College,
Oxford, UK 10th to 14th April 2000

3. R.C. Backhouse and P.F. Hoogendijk. Final dialgebras: From categories to allegories. fnfor-
matique Theorigue et Applications, 33(4/5):401-426, 1999, Presented at Workshop on Fixed
Points in Computer Science, Brno, August 1998.

¢ O

O U U U U Ve e U

¥ ¥ UV 9 vV v vV VU

v vy vy

U U o w

v U U 9

12.

13.

14.

15,
ib.

L. S. Barbosa. Components as Coalgebras. University of Minho, December 2001. Ph. D.
thesis.

R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C. A. R. Hoare, series editor.

. A. Cunha, J. Barros, and J.Saraiva. Deriving animations from recursive definitions, 2002.

To be presented at the 14th International Workshop on the Implementation of Functional
Languages (IFL02), Sept. 2002, Madrid.

J. Darlington. A synthesis of several sorting algorithms. Acta Informatica, 11:1-30, 1978,
I. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edition, 1998.

The VDM Tool Group. VDM-SL sorting algorithms. Technicat report, IFAD, Forskerparken
10, DK-5230 Odense M, Denmark, February 2000.

. B.T. Howard. Another iteration on Darlington’s ‘A Synthesis of Several Sorting Algo-

rithms’. Technical Report KSU CIS 94-8, Department of Computing and Information Sci-
ences, Kansas State University, 1994.

. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomorphisms

from recursive definitions. In Proceedings Ist ACM SIGPLAN Int. Conf. on Functional
Programming, ICFP96, Philadelphia, PA, USA, 24-26 May 1996, volume 31(6}, pages 73—
82. ACM Press, New York, 1996. .

J. Jeuring and P. Jansson. Polytypic programming. In Advanced Functional Programming,
number 1129 in Lecture Notes in Computer Science. Springer, 1996.

C. B. Jones., Development Methods for Computer Programs including a Notion of Imterfer-
ence. PhD thesis, Oxford University, Junc 1981, Printed as: Programming Research Group,
Technical Monograph 25.

C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP'83,
pages 321-332. North-Holland, 1983.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4:413-424, 1992,

E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold 1o exponential types.
In 3. Peyton Jones, editor, Proceedings of Functional Programming Languages and Com-
puter Architecture (FPCA95), 1995,

. Shin-Cheng Mu and Richard Bird. Inverting functions as folds. In MPC’02: Mathematics of

Program Construction, Lecture Notes in Computer Science. Springer, 2002. {forthcoming).

. 1. N. Oliveira. ‘Explosive’ Programming Controlled by Calculation . Technical Report

UMDITRO2/98, DI, University of Minho, September 1998. Presented at AFP’98 (3rd Intern.
Sumemer School on Advanced Functional Programming), Braga, Portugal.

. L. N. Oliveira. “Bagatelle in C arranged for VDM SoLo™. Journal of Universal Computer

Science, 7(8):754~781, 2001. Special Issue on Formal Aspects of Software Engineering {
Colloquium in Honor of Peter Lucas , Institule for Software Technology, Graz University of
Technology, May 18-19, 2001).

