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Abstract

We designed the specification of the onboard track database for dig-
ital ATC (sutomatic train control) system with VDM and analyzed its
Integrity with automatic proofs, which is provided as the pilot proof sup-
port for VDM-Toolbox. We describe the precise of the analysis. And
we also describe some experiences that gives us a lot of hints to make
automatic proofs easier.

The specification is written in VDM-SL. In this specification, track
property such as length and location of track circuits and speed limits
are modelled as well as routes and stations, etc. In the specification, the
requiremnents are implemented as invariants that should be kept at any
time, On top of that, manipulations of the database are defined in such
a way that they keep the invariants.

From the specifications, proof obligations are generated automatically,
They are requirements to verify the consistency of the specification such
as satisfaction of keeping invariants, precondition, etc. Some mistakes are
found while looking at the specification.

Automatic proof support is available for the proof obligations. We can
use full automatic proofs and interactive proofs. In both cases all we need
Is just clicking buttons, although interactive proofs need some experience
and good understanding of the specification. We found some mistakes of
the specification through these proofs. After several modifications, 90%
of the proof obligations are proved fully automatically and the remains
are proved interactively. This means that the integrity of the specification
is proved fully mechanically.




1 Introduction

Railway Signalling is a safety critical system. Signalling systems are responsible
for the safety of train. No collision is allowed. Special hardware such as relay
has been used for the railway signaling. Recently computer has been widely
introduced to the signaling systems. For the hardware aspect of the computer,
the safety techniques are being established with special devices and redundant
systems. For example two out of three system is used. The comparing circuit
for this system has a function to be turned off when the circuit itself fails.

On the other hand, safety techniques for the software are not mature yet
in spite that the portion of software getting larger. Formal methods may be
a good solution for this issue. With formal methods, automatic and rigorous
verification of the specification is enabled. Especially we are interested in the
verification with automatic proofs. We applied formal methods with automatic
proof to the specification of the database of the digital ATC system. In this
report, we describe the analysis and discuss the effect of the formal analysis.

1.1  Application of Formal Methods in the Railway System

There are already railway applications of formal methods. In France, in develop-
ment of SACEM, a train control system in RER line in Paris, the early version
of B[3] is used[2]. B is also used in another ATC system of Paris metroi4].
In Sweden in the verification of Ebilock, an interlocking system (interlocking
is a system which controls switches and signals in the station), specification is
written in STERNOL, and verified with NP-Tool[5].

The use of formal methods are recommended in the internaticnal safety
standard IECB1508. So many applications are expected to be appear.

1.2 PROSPER and VDM-Toolbox with proof support

In this report we used VDM. The VDM-Toolbox, provided by IFAD in Denmark,
features syntax and type checking, interpreter and test coverage, but proofs
are not supported. So IFAD stress on modelling aspect of VDM. Of course
IFAD recognizes the demand for proof support and IFAD participated in Ell’s
ESPRIT project PROSPERI6] and developed alpha version of proof facilities.
We had a chance to use it, and applied this tool to our project, explained in
the following sections. In PROSPER academic research of automatic theorem
proving is incorporated in the industrial CASE and CAD tools. VDM-Toolbox
is an application of CASE tool. In the development of proof support of VDM-
Toolbox, our study is used to improve the performance of proofs.
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2 Digital ATC Track Database — Object of The
Analysis

‘We applied formal metheds to the specification of digital AT'C track database.
We explain what this is.

2.1 Digital ATC System

ATC{automatic train control) system has been used in Shinkansen (Japanese
high speed train service) and some heavy commuter lines in Japan. It is very
reliable system and there is no accident with fatality in relation with this sys-
tem. But there are some problems in concern with the efficiency of traffic. In
the conventional ATC systern, the maximum speed is transmitted to the train
for each biocks. The signal is called speed signal and its maximum speed is cal-
culated in advance according to the trains with worst braking performances. In
case of trains with good braking performance, the braking curve, which means
the trace of the train speed against the location while slowing down, is muiti
steps and, as a result, the running time and headway get longer.
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Figure 1: Concept of Digital ATC System

To overcome this problem, digital ATC[7] has been developed. In this sys-
tem, the signal is a kind of distance signal. The number of clear blocks and
the ID of the block where train stays are sent to the train by digital transmis-
sion. The onboard system looks up the database from that information, and
calculates the braking curve according to the property of the train itself. This
enables to calculate the optimum braking curve for each train. This system
moves the subject of the calculation of braking curve from ground equipment
to the vehicle. This means that onboard system is much more responsible for
the safety.

The research phase of this system is finished, and now this system is being
introduced to a part of Shinkansen. First section equipped with this system is
going to appear in this year.




2.2  Structure of the database

The database is very important for the safety as welil8]. If the database is
not correct, it results in dangerous braking curve that allows the collision and
derailment. So the high integrity is required for the database. The difference
between the database and the actual equipment cannot be examined with formal
methods, but the inconsistency of the properties within the database can be
checked. We tried to make the structure of the database with consistency. The
structure of the track database can be drawn as Figure 2.
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Figure 2: Structure of The Track Database

The basic components of the database are track circuits. A track circuit is
an electrie circuit which uses the two parallel rails as a part of it and wheels of
vehicle as the switch (see Figure.3.) Then existence of a train can be detected.
The region where the existence of a train can be detected with the track circuit is
also called track circuit hereafter. In this report you can interpret track circuits
as blocks, Track circuits have more functions. The current of track circuits
catries signals related with ATC systems. The information of track circuits
in the database includes that of ATC signal, the location and the boundary
information. Fach track circuit has a unique ID in the area.
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Figure 3: Track Circuit

There may be switches in the area detected by track circuits. On track
circuits, paths are defined as a pair of the boundaries to specify from where to
where trains can proceed. For example when a track circuit with a switch is
shown as Figure 4, one path can be defined as a pair of (1,2) and another path
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can be defined as a pair of (1,3). To handle the track cirenits uniformly, paths
are defined in case there is no switch. In this case there is only one path.
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Figure 4: Track Circuit with one switch

On top of track circuits and paths, routes are defined as sequences of paths.
Routes express how trains can go along. All of the defined paths are connected
according to the definition of routes. Each route has also a unique ID and the
IDs are sent to trains in real time to indicate how the train can go along.

The track has speed limitations in relation with curve and track conditions.
And gradients of slopes are also an important factor to calculate the braking
curve. These properties are also registered in the database.

Among these properties there are many relationships. These relationships
must have consistency. We verify the consistency.

3 Formal Analysis

3.1  Writing Formal Specification

Before formal analysis, we need to write a formal specification from informal
specification. We described the specification with a formal specification lan-
guage VDM-SL. First, the basic components such as track circuits and routes
are modelled as types. Track circuits are modelled as follows:

TrackC:: jeints : map Joint_id to Joint
atc : map Direction to ATC
td : TD
atbt : ATBT

Joint in the first line expresses the boundary of the track circnit. Two track
circuits are connected via Joint. In the second line, ATC signal is defined with
a direction. ATC signal is always sent to the front of the train. So, in general,
the ATC signals are different between two directions of train movement. TD in
the third line is the abbreviation of train detection signal which is used on some
track circuits. ATBT in the last line means AT or BT. These show whether the
train detection signal is sent from the front of the train or the rear of the train.

Then, we add invariants to the types. Invariant is the constraint to the
types. Any values with a certain type should keep the invariants at any time.
Invariants are very strong constraint. If the safety requirements are included as




invariants, they should be kept at any time. The track circuit type, for example,
has following invariants:

inv mk_TrackC(joints, atc, td, atbt) ==
card dom joints > 1 and
dom atc = {<ADIR>, <BDIR>} and
TD_Used_NonInsulated _TC(td, atbt, rng joints) and

(atc(<ADIR>) .used and atc(<BDIR>.used) =>
atc (<ADIR>) .carrier <> atc(<BDIR>).carrier)

In the second line, it is defined that the number of the joints is more than
one. In the fourth line, a predicate TD_Used_NonInsulated_TC is used. This
means that train detection signals are used only on the non-insulated track
circuits, which are track circuits without any electric insulation at the joints. A
predicate is a function to return a boolean value. The use of predicates makes
the specification easy to read.

After the structure of the database is defined, we shouid add the small set
of the operations. Here is an example for the operation to add (r egister) a new
track circuit into the database:

Add_TrackC : Area * TrackC_id % TrackC ~> Area
Add_TrackC(ar, tcid, tc) ==
mi(ar, trackcs |-> ar.trackes ++ {tcid {-> tch)
pre tcid not in set dom ar.trackes and
forall jid in set dom %tc.joints &
Unly_Cne Next_TrackC(...) and
forall tcidi in set dom ar.trackes &
Joint_and_Next_TrackC_Consistent(...)

The part following pre defines the precondition, which defines the restrictions
among the parameters to keep the calculation consistent. Whenever this func-
tion is used, the precondition must be satisfied.

After that postconditions are defined to verify the relationship between input
parameters and retwn value. The specification reaches 985 lines of VDM-SL
code.

Post condition is the reqguirement between the parameter of the fucntion and
return value. This is an extension for standardized VDM-SL. VDM-SL has two
types of function: implicit and explicit. In explicit functions in which function
body is written, post condition is somewhat extra things. In this case it is
explicit, but post condition can be added.

Postcondition of Add_TrackC is as follows:

post tcid in set dom RESULT.trackcs and
RESULT.trackecs = ar.trackes ++ {tcid |~-> tc} and
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RESULT .trackes(tcid) = tc and
RESULT.paths = ar.paths and
RESULT.routes = ar.routes;

You can find that the post condition is somewhat identical to the function body.
So it may seem strange. But the concept is that if the post condition is written,
the function body can be changed as long as the postcondition is satisfied.

3.2 Generating Proof Obligation

When the specification is written in formal specification languages, proof obli-
gations can be generated. These are the requirements to verify the consistency
of the specification. For the specification used here, 188 proof obligations are
generated.

Proof obligations are classified into many classes. One of the most difficult
class is invariant type, which are generated for any values. Most typical obli-
gations are generated for the return values of functions. For example, for the
previously appeared Add_TrackC, following proof obligation is generated:

forall ar: Area, tcid: TrackC_id, tc: TrackC &
pre_Add TrackC{ar, tcid, tc) =>
inv_Area(Add_TrackC(ar, tcid, tc))

This means that if the precondition of Add_TrackC is satisfied, return value
must satisfy the invariants of Area type. Notice that forall is used. This is
the requirement for all of the possible values. So the proof obligations are strong
requirement and difficult to prove.

Much more proof obligations are classified as domain types. This requires
that the domain must be defined at any time. For example, there is a function
Line_Add_TrackC which calls Add_TrackC and defined as follows:

Line Add_TrackC : Line * Area_id * TrackC_id * TrackC -> Line
Line_Add_TrackC(ln, aid, tcid, tg) ==
mu{ln, areas |-> ln.areas ++
{aid |-> Add_TrackC(ln.areas(aid), tecid, tc)})
pre aid in set dom In.areas and
pre_Add_TrackC(ln.areas{(aid), tcid, tec) and

post

Since Add_TrackC is defined with a precondition, we must check that the param-
eters satisfy the precondition whenever Add_TrackC is called. Then following
proof obligation is generated for the call of Add_TrackC

forall In : Line, aid : Area_id, tcid : TrackC_id, tc : TrackC &
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Figure 5: Snapshot of GUI

pre Line_Add TrackC(ln, aid, tecid, tc) ==>
pre_Add_TrackC(ln.areas(aid)}, tcid, tc)

When a function is applied, the precondition of the function must be satis-
fied. In many cases it is sufficient to include the requirementis into the context
and they are proved easily. )

The proof obligations can be examined by hand. If a proof obligation found
false, it means the inconsistency of the specification so it needs to be modified.
In the beginning we checked the specification by hand and found some mistakes
without automatic proofs. The proof obligation generator provides very power-
ful support even without automatic proof support. Of course if the automatic
proof support is available, we can save time to check the proof obligations.

3.3 Automatic Proofs

The specification and its proof obligations are loaded into the proof engine.
This engine is based on HOL(High Order Logic){9]. The PROSPER project
developed an APIL, called PROSPER Toolkit. The Core Proof Engine of the
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PROSPER Toolkit is primitive, but the proof engine can be customized by
adding HOL theories, rewriting rules, and proof management and user defined
modules. The engine used here is customized for proving VDM-SL specifica-
tions. '

Automatic proofs are very easy to use. We just need to click a button to
execute automatic proofs. Two kinds of full automatic proof procedures are
available. The first one checks the proof obligations quickly but gives up fast.
There are a lot of proof obligations easy to prove, so many proof obligations are
swept out. The other checks more deeply and takes time. Some of the proof
obligations are proved with this.

Even if the proof is not finished, the subgoal left undetermined are reported,
which helps us to prove by hand or finding mistakes. For the reasons why
automatic proof is not successful, please refer section 4. Even if many proof
obligations are left undetermined, the number of them are much reduced from
that of the original and we can concentrate on the undetermined obligations.

We found mistakes through this tool. For example, if a precondition is
short of some predicates to keep invariants, the subgoal says that the conclusion
includes some predicate which are not included in the assumption. In another
case, the same subgoal remains undetermined among several proof obligations.
After the modification of the mistakes, 167(90%) of the proof obligations are
proved automatically,

3.4 Interactive Proofs

Interactive proof support is available for the undetermined cases. Figure 6 is
a snapshot of GUI for proving the proof obligation shown in section 3.2. The
proof is called goal oriented proof. The goals to be proved are split into small
subgoals and when all of the subgoals are proved, the original goal is proved.

‘The other procedure includes unfolding functions, moving left hand of the
implication in the conclusion into assumption, combining some assumptions
into a new assumption, case splits, etc. In fact, the automatic proof procedure
consists of such procedures with the automatic selection. For some precise
procedure, please refer Table 1. We can select these procedures by clicking a
button on the GUL This GUT is intended to provide proof facility to those who
are not so expert in the proofs. The history of the proof is displayed as the
proof tree in the left side of the GUI.

Although the GUI is very easy to use, it is stil} diffcult to do some proofs.
Sometimes the proof tree reaches 100 steps and it takes several hours to prove
the obligation. To select proper buttons, we should not only get used to the
tool, but also well understand the specification itself. We must consider well
this if we are to succeed.

Although the interactive proofs are time consuming, the result is very pow-
erful. 'We proved all of the remaining proof obligations. This means that the
proof obligations are proved fully mechanically.
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3.5 How to Handle Validation Conjectures?

What we proved here is the consistency of the specification. But how can we
handle validation conjectures, which are not obligations, but expected to be

true? Here is an example of validation conjecture:

Del TrackC(Add_TrackC{ar, tcid, tc), tcid) = ar

Conj._Add_and_Del_TrackC :
Area * TrackC_id * TrackC -> bool
Conj_Add_and Del_TrackC(axr, tcid, te) ==
Del TrackC(Add TrackC(ar, tcid, tc¢), tcid) = ar
pre pre_Add_TrackC{ar, tcid, tc)
post RESULT = true;

10

Snapshot of GUI for Interactive Proof

This means that when a new track circuit with ID tcid is added, then the track
cireuit is removed again, the data is the same as before. The user interface for
handling the validation conjecture is not provided. But the automatic prove is
available to add a following predicate to the specification.
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splitting of the goal -——A~|-_B—AC—_
AFBAAFC
Implication itﬁiﬂ
ABEC
for ali VX:C- f(X),Y :CF Ay, Ay, .., A,
FVYX :C. f(X),Y :CF A, Ay, ..., An

Table 1: Tactic of the Interactive Proof

Then the following proof obligation is generated in relation with postcondition:

forall ar : Area, tcid : TrackC_id, tc : Track(C &
pre_Add_TrackC{ar, tcid, tc) ==>
{(Del_TrackC(Add_TrackC(ar, tcid, tc), tcid) = axr)
= frue)

If this is proved true, the validation conjecture is true. If you want something
to be proved other than proof obligations, it is handled in the same way. This
is not so convenient, so more sophisticated tool is required. In fact it is difficult
to make GUI to handle these things easy. At least it is very difficult to input
the things to prove only by simple buttons.

4 Experiences — Hints to Make Proofs Easier

There are several reasons why the automatic proofs are not successful. In the
following sections we show some experiences about the difficulty. This gives us
large helps to make proofs easier.

4.1 To Find Counter Examples

The proof engine cannot disprove the obligations. When a proof obligation
is false, the automatic engine classifies it as undetermined. We must decide
whether it should be disproved or simply difficult to prove. The easiest way to
disprove it is to find a counter exampie because most of the proof obligations
are written beginning with forall. Only one counter example is enough to
disprove this. We should find i by hand, but we can use interpreter to check
the counter example violates the invariants, which is very clear disproof. When
there is a mistake in the specification, counter examples often heip us to find
the mistake.

1




4.2 To Express the Same Thing in a Same Way

When sequence is used, the use of indexes of the sequence causes a problem.
Let’s consider two expressions. The first one is:

forall i in set inds a & f(a(i)) (1

where inds a means index set of the sequence a and a(i) is the i-th element
of a. The other is:

forall x in set elems a & £(x) (2)

where elems a means the collection of all elements of the sequence a. These
{wo expressions mean the same thing, but they are understood in different ways.
First one is understood as a sentence of variable x, while the other is understood
as o sentence of integer i. Suppose a goal in which the assumption is (1) and
the conclusion is (2). Then this is rewrited with the following assumptions:

¥ in set elems a
forall i in set inds a & f£(a(i))

and the following conclusion:

£(x)

If the proof engine can find that
exists i in set inds a & a(i) = x

and substitute a (i) of £ (a(3)) with x, this goal can be proved. But it is difficult
to do so.

The fiexibility is a factor whether it can be written easily. But on the other
hand this makes the automatic proofs difficult. In the practical point of view,
therefore, if some parts means the same thing, all of them should be written
in the same manners and the common part should be written as an additional
function. This is important for human as well because it makes the specification
readable.

4.3 Prevent Too Deep Tree

When a new assumption is added by combining some assumptions, all of the
possible combinations are tried. Automatic prove cannot choose a specific com-
bination. As a result, assumptions get larger fast and it takes time to prove.
In some case, this process goes into infinity loop. To prevent this situation,

12
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automatic proof is interrupted. If the proof needs to be unfolded deeper, it is
hard to be proved.

Although in the previous section we described that the specification should
be written smart with functions, the use of the functions sometimes makes
the proofs difficult. This is a contradictory fact. We should try make the
relationship of the functions simple.

4.4 Contradiction

There are some undetermined cases, in which the contradiction will be satisfied.
When

CLI, a‘21 vy a’n IM f(a'i 3 (12, rery an)

is to be proved, we can prove it by disproving

?(al,ag, celln ), Q15 G2, .y Og

The feature to handle these situations has heen added to the GUIL But this
procedure is difficuit do by automatically.

5 Conclusion

We analyzed the specification of digital ATC track database with formal meth-
ods and automatic proofs. The specification was proved consistent fully me-
chanically.

The proof obligations have very strong property so automatic generation
of them provides help us finding mistakes in the specification even without
automatic proofs.

The automatic proof support is much more powerfiil. In this analysis 90%
of proof obligation are proved automatically. Even the proof obligations are
not proved so much, the tool provides us information of undetermined proof
obligations and helped us fnding mistakes.

The interactive proof support GUI achieved some points from the point of
view of user friendly. Buf it took a lot of time to succeed in proofs. It is
still diffieult to succeed in interactive proofs hecause the good knowledge of the
specification is required. We should write formal specification easy to read both
for human and computer. In spite of the difficulty, we could interactively prove
all of the proof obligation undetermined by the automatic proofs. We could
prove the consistency of the specification.

Although the tool still needs a lot of improvement in both proof engine and
GUI, we are satisfied with the analysis as an experimental project. And we
hope that the analysis with formal methods and automatic proofs become more
common method in the near future.
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